## **SOLUTIONS TO PROBLEMS 1105-1110**

**Q1105** A *hollow square* is an arrangement of dots in a square with a central square left blank. For example here are thirty two dots arranged in a hollow square.



In how many different ways can 960 dots be formed into a hollow square.

**ANS.** Suppose the outer square is  $a \times a$  and the inner square is  $b \times b$ . Then we are seeking positive integer solutions to

$$960 + b^{2} = a^{2}$$

$$a^{2} - b^{2} = 960$$

$$(a + b)(a - b) = 960$$

Now  $960 = 2^6 \times 3 \times 5$  has (6+1)(1+1)(1+1) = 28 divisors. (How many divisors (factors) does  $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$  have?)

Now at least one of a + b, a - b is even, so they are both even. Also a - b < a + b, so a - b < 31. Hence there are exactly ten solutions

| a-b | a+b | a   | b   |
|-----|-----|-----|-----|
| 2   | 480 | 241 | 239 |
| 6   | 160 | 83  | 77  |
| 10  | 96  | 53  | 43  |
| 30  | 32  | 31  | 1   |
| 4   | 240 | 122 | 118 |
| 12  | 80  | 46  | 34  |
| 20  | 48  | 34  | 14  |
| 8   | 120 | 64  | 56  |
| 24  | 40  | 32  | 8   |
| 16  | 60  | 38  | 22  |

**Q1106** How many different ways are there of making six prime numbers which together use each of the nine digits  $1, 2, 3, \ldots, 9$  exactly once?

1

**ANS.** There are exactly 4 single digit primes, namely 2, 3, 5 and 7. Also if we only used 2 single digit primes we would need at least ten digits so each solution must include either 3 or 4 single digit primes. Next we note that every prime greater than 10 has 1, 3, 7 or 9 as its last digit. This means that there are 4 cases

where the crosses are 4,6 and 8 in some order. Note that 41,61; 43,83; 47,67 and 89 are all primes.

In CASE 1 we only have to consider  $689 = 13 \times 53$ ,  $869 = 11 \times 79$ ,  $489 = 3 \times 163$  and  $849 = 3 \times 283$ , so there are no solutions in this case.

In CASE 2, both 461 and 641 are prime.

In both CASE 3 and CASE 4, 89 must occur and we find 3 more solutions, giving 5 in all:

**Q1107** Is the large pentagon more than twice, or less than twice, the area of the star inside it?



**ANS.** Consider the following labellings where O is the centre of the star and both pentagons.



The sum of the internal angles in an n-gon is  $(n-2) \times 180^{\circ}$ . Hence each internal angle in a regular pentagon is  $(5-2)180/5 = 108^{\circ}$ .

Thus  $\angle AIB = \angle HIJ = 108^{\circ}$  and  $\angle ABI = \angle BAI = 36^{\circ}$ .

On the other hand  $\angle AOB = 360/5 = 72^{\circ}$ , so  $\angle BAO = (180 - 72)/2 = 54^{\circ}$ .



We can assume AB = 2 and so area  $\triangle ABI = \frac{1}{2} \times 2 \times \tan 36^{\circ} = \tan 36^{\circ}$  and area  $\triangle ABO = \frac{1}{2} \times 2 \times \tan 54^{\circ} = \tan 54^{\circ}$ . Since the area of the star is 5 times the area of the region AOBI and the area of the large pentagon is 5 times the area of the triangle AOB, the area of the large pentagon is more than twice the area of the star if  $\tan 54^{\circ} > 2(\tan 54^{\circ} - \tan 36^{\circ})$  or  $\tan 54^{\circ} < 2\tan 36^{\circ}$ .

Now my calculator tells me  $\tan 54^{\circ} = 1.3764$  and  $\tan 36^{\circ} = 0.7265$ .

So the pentagon is larger than twice the star.

**Note:** Those readers who know some trigonometry will appreciate the following explicit calculation of the tangents. It is known that

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

hence

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos A \cos B}}{1 - \frac{\sin A \sin B}{\cos A \cos B}}$$

(by dividing both numerator and denominator by  $\cos A \cos B$ )

$$= \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

In particular,

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

If we let  $t = \tan 36^{\circ}$ , then  $\tan 54^{\circ} = \cot 36^{\circ} = 1/\tan 36^{\circ} = 1/t$ . Next  $\tan 72^{\circ} = \frac{2t}{1-t^2}$ , so  $\tan 18^{\circ} = \cot 72^{\circ} = \frac{1-t^2}{2t}$ . However  $36^{\circ} = 2 \times 18^{\circ}$ , so

$$t = \frac{\frac{2(1-t^2)}{2t}}{1 - \frac{(1-t^2)^2}{(2t)^2}} = \frac{4t(1-t^2)}{4t^2 - (1-t^2)^2}.$$

Hence

$$4t^{2} - 1 + 2t^{2} - t^{4} = 4 - 4t^{2}$$
$$t^{4} - 10t^{2} + 5 = 0$$
$$(t^{2} - 5)^{2} = 20$$
$$t^{2} = 5 + 2\sqrt{5}$$

But  $\tan 36^{\circ} < \tan 45^{\circ} = 1$ . Hence  $t^2 = 5 - 2\sqrt{5}$ , so  $t = \sqrt{5 - 2\sqrt{5}}$ . Finally  $\frac{1}{t} < 2t \Leftrightarrow t^2 > \frac{1}{2} \Leftrightarrow 5 - 2\sqrt{5} > \frac{1}{2} \Leftrightarrow 9/2 > 2\sqrt{5} \Leftrightarrow 81/4 > 20$ , as required.

## SECOND ANSWER

Returning to the original diagram,

$$\angle FBC = \angle IBA = 36^{\circ}$$
, so  $\angle FBI = 108^{\circ} - 72^{\circ} = 36^{\circ} = \angle ABI$ .

Also  $\angle IJF = 108^{\circ}$  and  $\triangle IJF$  is isoceles, so  $\angle BFI = \angle FIJ = 36^{\circ} = \angle BAI$ .

Hence  $\triangle FIB \equiv \triangle AIB$ .

It is also easy to see that O is closer to IJ than F. Hence area  $\triangle OIJ < \text{area } \triangle FIJ$  and hence area region  $OJBI < \text{area } \triangle FIB = \text{area } \triangle AIB$ .

However OJBI is 1/5 of the star, hence result.

**Q1108** It is a curious fact that  $\sqrt{2\frac{2}{3}} = 2\sqrt{\frac{2}{3}}$ .

Is this isolated or are there other such expressions?

Find all solutions to  $\sqrt{m+x} = m\sqrt{x}$  where m is a positive integer and x is real.

**ANS.** As we shall see this is actually a problem in number theory. Suppose

$$\sqrt{m+x} = m\sqrt{x}$$

$$m+x = m^2x$$

$$x = \frac{m}{m^2 - 1}$$

so x is actually a rational number.

Conversely if  $x = \frac{m}{m^2 - 1}$  then  $\sqrt{m + x} = m\sqrt{x}$  so we have an infinite family of solutions, one for each integer  $m \ge 2$ . For example  $\sqrt{7 + \frac{7}{48}} = 7\sqrt{\frac{7}{48}}$ .

**Q1109** Determine the smallest value of  $x^2+5y^2+8z^2$ , where x, y and z are real numbers subject to the condition yz + zx + xy = -1. Does  $x^2 + 5y^2 + 8z^2$  have a *greatest* value subject to the same condition? Justify both answers.

**ANS.** Intuitively one would expect this expression to have a smallest value since x, y and z cannot all approach 0 when yz + zx + xy = -1. However, one would expect it to grow without bound in some part of the surface yz + zx + xy = -1.

In fact, the second part of the problem is relatively straight forward. For if we set z=0 we obtain a rectangular hyperbola xy=-1. So, for any value of  $\alpha$  with  $\alpha>0$ , the points  $(\alpha,-1/\alpha,0)$  all lie on the surface and  $x^2+5y^2+8z^2$  is greater than  $\alpha^2$ . So the function has no greatest value.

The first part is much harder. To motivate the solution consider

$$x^{2} + 4xy + 9y^{2} = (x + 2y)^{2} + 5y^{2}$$
$$x^{2} + 4xy + y^{2} = (x + 2y)^{2} - 3y^{2}.$$

The first quadratic is expressed as the *sum* of two squares and hence is never negative, whereas the second quadratic is expressed as the *difference* of two squares and is sometimes positive and sometimes negative. (The first is called "positive definite" and the second is "indefinite".)

To tackle  $x^2 + 5y^2 + 8z^2$  subject to yz + zx + xy = -1 one tries to express

$$x^{2} + 5y^{2} + 8z^{2} \equiv (\alpha x + \beta y + \gamma z)^{2} + (\delta x + \varepsilon y + \eta z)^{2} + \zeta(yz + zx + xy).$$

If we can calculate these 7 constants and obtain a negative value of  $\zeta$  then a solution is close. Clearly there are too many constants to calculate and a little thought suggests

trying

$$x^{2} + 5y^{2} + 8z^{2} \equiv (x + by + bz)^{2} + (cy + dz)^{2} + e(yz + zx + xy)$$

$$\equiv x^{2} + b^{2}y^{2} + b^{2}z^{2} + 2bxy + 2bxz + 2b^{2}yz + c^{2}y^{2} + 2cdyz + d^{2}z^{2}$$

$$+ eyz + ezx + exy$$

$$\equiv x^{2} + (b^{2} + c^{2})y^{2} + (b^{2} + d^{2})z^{2} + (2b + e)xy + (2b + e)xz + (2b^{2} + 2cd + e)yz$$

as an identity in x, y and z. Now equate coefficients obtaining

$$b^2 + c^2 = 5 (1)$$

$$b^2 + d^2 = 8 (2)$$

$$2b + e = 0 (3)$$

$$2b^2 + 2cd + e = 0 (4)$$

Eliminating e from (3) and (4) yields

$$2b^{2} + 2cd - 2b = 0$$

$$cd = b - b^{2}$$

$$c^{2}d^{2} = b^{2} - 2b^{3} + b^{4}$$
(5)

Next we substitute (1) and (2) into (5) eliminating  $c^2$  and  $d^2$ .

$$(5 - b^2)(8 - b^2) = b^2 - 2b^3 + b^4$$

$$2b^{3} - 14b^{2} + 40 = 0$$
$$b^{3} - 7b^{2} + 20 = 0$$
$$(b - 2)(b^{2} - 5b - 10) = 0$$

or

$$b = 2, \quad \frac{5 \pm \sqrt{25 + 40}}{2}.$$

We consider b=2 first and (1), (2), (3) yield  $c=\pm 1$ ,  $d=\pm 2$ , e=-4. Now (4) shows that c and d have opposite signs, so returning to the identity we have

$$x^{2} + 5y^{2} + 8z^{2} \equiv (x + 2y + 2z)^{2} + (y - 2z)^{2} - 4(yz + zx + xy)$$
$$= (x + 2y + 2z)^{2} + (y - 2z)^{2} + 4$$

We must finish the problem by showing the apparent minimum value 4 can be achieved. So assume z = t and y - 2z = x + 2y + 2z = 0 then y = 2t and x = -6t. Substituting these values in the surface,

$$2t^2 - 6t^2 - 12t^2 = yz + zx + xy = -1$$
 or  $t = \pm \frac{1}{4}$ .

In conclusion we have shown that the minimum is 4 and it occurs at  $\pm(\frac{3}{2},-\frac{1}{2},-\frac{1}{4})$ .

## Note:

The reader should consider the meaning of the other roots  $\frac{5\pm\sqrt{65}}{2}$  of the cubic.

**Q1110** Let f be a function mapping positive integers into positive integers. Suppose that f(n+1) > f(n) and f(f(n)) = 3n for all positive integers n. Determine f(2001).

**ANS.** The standard approach to solving a "functional equation" problem is to begin by determining possible values of f(0), f(1), etc. or by showing that f has other properties. Once enough is known about f it should be possible to conjecture some more general properties of f and prove them, often by using induction.

STEP 1 f(1) > 1. For suppose f(1) = 1. Then 3 = f(f(1)) = f(1) = 1, a contradiction.

STEP 2 f(n) > n. For suppose  $f(k) \le k$  for some k. Then  $f(k-1) < f(k) \le k$ , so  $f(k-1) \le k-1$ . Repeating this argument k-1 times we obtain  $f(1) \le 1$  in contradiction to step 1. Hence f(n) > n for all n.

STEP 3 f(1) = 2. For suppose  $f(1) = n \ge 3$ . Then  $3 = f(f(1)) = f(n) > n \ge 3$ , a contradiction. Hence f(1) = 2.

It is now possible to calculate a number of values.

$$f(2) = f(f(1)) = 3,$$
  $f(3) = f(f(2)) = 6,$   
 $f(6) = f(f(3)) = 9,$   $f(9) = f(f(6)) = 18,$   
 $f(18) = f(f(9)) = 27,$   $f(27) = f(f(18)) = 54$ 

and a pattern is clear. We conjecture  $f(3^n) = 2 \times 3^n$  and  $f(2 \times 3^n) = 3^{n+1}$ .

Next we see that 6 = f(3) < f(4) < f(5) < f(6) = 9, hence f(4) = 7, f(5) = 8 and f(7) = f(f(4)) = 12, f(8) = f(f(5)) = 15.

At this stage it is reasonably clear that there is only one function f which satisfies both conditions and perhaps a table of values will help.

| n | f(n) | n  | f(n) | n  | f(n) | n  | f(n) |
|---|------|----|------|----|------|----|------|
| 1 | 2    | 8  | 15   | 15 |      | 22 |      |
| 2 | 3    | 9  | 18   | 16 |      | 23 |      |
| 3 | 6    | 10 |      | 17 |      | 24 |      |
| 4 | 7    | 11 |      | 18 | 27   | 25 |      |
| 5 | 8    | 12 |      | 19 |      | 26 |      |
| 6 | 9    | 13 |      | 20 |      | 27 | 54   |
| 7 | 12   | 14 |      | 21 |      | 28 |      |

There are eight blanks between 9 and 18 and eight numbers between 18 and 27. Hence f(10) = 19, f(11) = 20, ..., f(17) = 26. Next

$$f(19) = f(f(10)) = 30, \quad f(20) = f(f(11)) = 33, \dots, \quad f(26) = f(f(17)) = 51,$$

$$f(30) = f(f(19)) = 57$$
,  $f(33) = f(f(20)) = 60$ , ...,  $f(51) = f(f(26)) = 78$ , etc.

So we get the following table:

| n  | f(n) | n  | f(n) | n  | f(n) | n  | f(n) |
|----|------|----|------|----|------|----|------|
| 1  | 2    | 15 | 24   | 29 |      | 43 |      |
| 2  | 3    | 16 | 25   | 30 | 57   | 44 |      |
| 3  | 6    | 17 | 26   | 31 |      | 45 | 72   |
| 4  | 7    | 18 | 27   | 32 |      | 46 |      |
| 5  | 8    | 19 | 30   | 33 | 60   | 47 |      |
| 6  | 9    | 20 | 33   | 34 |      | 48 | 75   |
| 7  | 12   | 21 | 36   | 35 |      | 49 |      |
| 8  | 15   | 22 | 39   | 36 | 63   | 50 |      |
| 9  | 18   | 23 | 42   | 37 |      | 51 | 78   |
| 10 | 19   | 24 | 45   | 38 |      | 52 |      |
| 11 | 20   | 25 | 48   | 39 | 66   | 53 |      |
| 12 | 21   | 26 | 51   | 40 |      | 54 | 81   |
| 13 | 22   | 27 | 54   | 41 |      | 55 |      |
| 14 | 23   | 28 |      | 42 | 69   | 56 |      |

The rest of the above table can now be filled in. So we conjecture

$$\begin{array}{rcl} f(3^n) & = & 2 \times 3^n \\ f(2 \times 3^n) & = & 3^{n+1} \\ f(3^n + k) & = & 2 \times 3^n + k \\ f(2 \times 3^n + k) & = & 3^{n+1} + 3k \end{array} \qquad \begin{array}{rcl} 1 \leq k < 3^n \\ 1 \leq k < 3^n \end{array}$$

The proofs of these are easy by induction and are left to the reader. Finally  $3^6=729$ ,  $2.3^6=1458$  and  $3^7=2187$ , so  $2001=2.3^6+543$  and

$$f(2001) = f(2 \times 3^6 + 543) = 3^7 + 3 \times 543 = 3816.$$