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SOLUTIONS TO PROBLEMS 1105-1110

Q1105 A hollow square is an arrangement of dots in a square with a central square left
blank. For example here are thirty two dots arranged in a hollow square.

• • • • • •
• • • • • •
• • • •
• • • •
• • • • • •
• • • • • •

In how many different ways can 960 dots be formed into a hollow square.

ANS. Suppose the outer square is a × a and the inner square is b × b. Then we are
seeking positive integer solutions to

960 + b2 = a2

a2 − b2 = 960

(a+ b)(a− b) = 960

Now 960 = 26 × 3 × 5 has (6 + 1)(1 + 1)(1 + 1) = 28 divisors. (How many divisors
(factors) does n = pa11 pa22 . . . pak

k
have?)

Now at least one of a + b, a − b is even, so they are both even. Also a − b < a + b, so
a− b < 31. Hence there are exactly ten solutions

a− b a+ b a b
2 480 241 239
6 160 83 77
10 96 53 43
30 32 31 1
4 240 122 118
12 80 46 34
20 48 34 14
8 120 64 56
24 40 32 8
16 60 38 22

Q1106 How many different ways are there of making six prime numbers which to-
gether use each of the nine digits 1, 2, 3, . . . , 9 exactly once?
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ANS. There are exactly 4 single digit primes, namely 2, 3, 5 and 7. Also if we only
used 2 single digit primes we would need at least ten digits so each solution must
include either 3 or 4 single digit primes. Next we note that every prime greater than 10
has 1, 3, 7 or 9 as its last digit. This means that there are 4 cases

CASE 1 2, 3, 5, 7, x1, xx9

CASE 2 2, 3, 5, 7, x9, xx1

CASE 3 2, 3, 5, x1, x7, x9

CASE 4 2, 5, 7, x1, x3, x9

where the crosses are 4, 6 and 8 in some order. Note that 41, 61; 43, 83; 47, 67 and 89
are all primes.
In CASE 1 we only have to consider 689 = 13× 53, 869 = 11× 79, 489 = 3× 163 and
849 = 3× 283, so there are no solutions in this case.
In CASE 2, both 461 and 641 are prime.
In both CASE 3 and CASE 4, 89 must occur and we find 3 more solutions, giving 5 in
all:

2, 3, 5, 7, 89, 461

2, 3, 5, 7, 89, 641

2, 3, 5, 41, 67, 89

2, 3, 5, 47, 61, 89

2, 5, 7, 43, 61, 89

Q1107 Is the large pentagon more than twice, or less than twice, the area of the star
inside it?

ANS. Consider the following labellings where O is the centre of the star and both
pentagons.
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The sum of the internal angles in an n-gon is (n− 2)× 180◦.
Hence each internal angle in a regular pentagon is (5− 2)180/5 = 108◦.
Thus ∠AIB = ∠HIJ = 108◦ and ∠ABI = ∠BAI = 36◦.
On the other hand ∠AOB = 360/5 = 72◦, so ∠BAO = (180− 72)/2 = 54◦.

A B

O

I

36◦

54◦

We can assume AB = 2 and so area △ABI = 1
2
× 2 × tan 36◦ = tan 36◦ and

area △ABO = 1
2
× 2 × tan 54◦ = tan 54◦. Since the area of the star is 5 times the

area of the region AOBI and the area of the large pentagon is 5 times the area of the
triangle AOB, the area of the large pentagon is more than twice the area of the star if
tan 54◦ > 2(tan 54◦ − tan 36◦) or tan 54◦ < 2 tan 36◦.
Now my calculator tells me tan 54◦ = 1.3764 and tan 36◦ = 0.7265.
So the pentagon is larger than twice the star.
Note: Those readers who know some trigonometry will appreciate the following ex-
plicit calculation of the tangents. It is known that

sin(A+ B) = sinA cosB + cosA sinB

cos(A+ B) = cosA cosB − sinA sinB
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hence

tan(A+ B) =
sin(A+B)

cos(A+ B)

=
sinA cosB + cosA sinB

cosA cosB − sinA sinB

=
sinA

cosA
+ sinB

cosB

1− sinA sinB

cosA cosB

(by dividing both numerator and denominator by cosA cosB)

=
tanA+ tanB

1− tanA tanB

In particular,

tan 2A =
2 tanA

1− tan2 A

If we let t = tan 36◦, then tan 54◦ = cot 36◦ = 1/ tan 36◦ = 1/t.
Next tan 72◦ = 2t

1−t2
, so tan 18◦ = cot 72◦ = 1−t2

2t
.

However 36◦ = 2× 18◦, so

t =
2(1−t2)

2t

1− (1−t2)2

(2t)2

=
4t(1− t2)

4t2 − (1− t2)2
.

Hence

4t2 − 1 + 2t2 − t4 = 4− 4t2

t4 − 10t2 + 5 = 0

(t2 − 5)2 = 20

t2 = 5± 2
√
5.

But tan 36◦ < tan 45◦ = 1. Hence t2 = 5− 2
√
5, so t =

√

5− 2
√
5.

Finally 1
t
< 2t ⇔ t2 > 1

2
⇔ 5− 2

√
5 > 1

2
⇔ 9/2 > 2

√
5 ⇔ 81/4 > 20, as required.

SECOND ANSWER
Returning to the original diagram,
∠FBC = ∠IBA = 36◦, so ∠FBI = 108◦ − 72◦ = 36◦ = ∠ABI .
Also ∠IJF = 108◦ and △IJF is isoceles, so ∠BFI = ∠FIJ = 36◦ = ∠BAI .
Hence △FIB ≡ △AIB.
It is also easy to see that O is closer to IJ than F . Hence area△OIJ < area△FIJ and
hence area region OJBI < area△FIB = area△AIB.
However OJBI is 1/5 of the star, hence result.
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Q1108 It is a curious fact that
√

22
3
= 2

√

2
3
.

Is this isolated or are there other such expressions?
Find all solutions to

√
m+ x = m

√
x wherem is a positive integer and x is real.

ANS. As we shall see this is actually a problem in number theory.
Suppose

√
m+ x = m

√
x

m+ x = m2x

x =
m

m2 − 1

so x is actually a rational number.
Conversely if x = m

m2−1
then

√
m+ x = m

√
x so we have an infinite family of solutions,

one for each integerm ≥ 2. For example
√

7 + 7
48

= 7
√

7
48
.

Q1109 Determine the smallest value of x2+5y2+8z2, where x, y and z are real numbers
subject to the condition yz + zx + xy = −1. Does x2 + 5y2 + 8z2 have a greatest value
subject to the same condition? Justify both answers.

ANS. Intuitively one would expect this expression to have a smallest value since x, y
and z cannot all approach 0 when yz + zx+ xy = −1. However, one would expect it to
grow without bound in some part of the surface yz + zx+ xy = −1.

In fact, the second part of the problem is relatively straight forward. For if we set z = 0
we obtain a rectangular hyperbola xy = −1. So, for any value of α with α > 0, the
points (α,−1/α, 0) all lie on the surface and x2 + 5y2 + 8z2 is greater than α2. So
the function has no greatest value.

The first part is much harder. To motivate the solution consider

x2 + 4xy + 9y2 = (x+ 2y)2 + 5y2

x2 + 4xy + y2 = (x+ 2y)2 − 3y2.

The first quadratic is expressed as the sum of two squares and hence is never negative,
whereas the second quadratic is expressed as the difference of two squares and is some-
times positive and sometimes negative. (The first is called “positive definite” and the
second is “indefinite”.)
To tackle x2 + 5y2 + 8z2 subject to yz + zx+ xy = −1 one tries to express

x2 + 5y2 + 8z2 ≡ (αx+ βy + γz)2 + (δx+ εy + ηz)2 + ζ(yz + zx+ xy).

If we can calculate these 7 constants and obtain a negative value of ζ then a solution
is close. Clearly there are too many constants to calculate and a little thought suggests
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trying

x2 + 5y2 + 8z2 ≡ (x+ by + bz)2 + (cy + dz)2 + e(yz + zx+ xy)

≡ x2 + b2y2 + b2z2 + 2bxy + 2bxz + 2b2yz + c2y2 + 2cdyz + d2z2

+ eyz + ezx+ exy

≡ x2 + (b2 + c2)y2 + (b2 + d2)z2 + (2b+ e)xy + (2b+ e)xz + (2b2 + 2cd+ e)yz

as an identity in x, y and z. Now equate coefficients obtaining

b2 + c2 = 5 (1)

b2 + d2 = 8 (2)

2b+ e = 0 (3)

2b2 + 2cd+ e = 0 (4)

Eliminating e from (3) and (4) yields

2b2 + 2cd− 2b = 0

cd = b− b2

c2d2 = b2 − 2b3 + b4 (5)

Next we substitute (1) and (2) into (5) eliminating c2 and d2.

(5− b2)(8− b2) = b2 − 2b3 + b4

2b3 − 14b2 + 40 = 0

b3 − 7b2 + 20 = 0

(b− 2)(b2 − 5b− 10) = 0

or

b = 2,
5±

√
25 + 40

2
.

We consider b = 2 first and (1), (2), (3) yield c = ±1, d = ±2, e = −4. Now (4) shows
that c and d have opposite signs, so returning to the identity we have

x2 + 5y2 + 8z2 ≡ (x+ 2y + 2z)2 + (y − 2z)2 − 4(yz + zx+ xy)

= (x+ 2y + 2z)2 + (y − 2z)2 + 4

Wemust finish the problem by showing the apparentminimumvalue 4 can be achieved.
So assume z = t and y − 2z = x + 2y + 2z = 0 then y = 2t and x = −6t. Substituting
these values in the surface,

2t2 − 6t2 − 12t2 = yz + zx+ xy = −1 or t = ±1

4
.
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In conclusion we have shown that the minimum is 4 and it occurs at ±(3
2
,−1

2
,−1

4
).

Note:

The reader should consider the meaning of the other roots 5±
√
65

2
of the cubic.

Q1110 Let f be a function mapping positive integers into positive integers.
Suppose that f(n + 1) > f(n) and f(f(n)) = 3n for all positive integers n. Deter-
mine f(2001).

ANS. The standard approach to solving a “functional equation” problem is to begin
by determining possible values of f(0), f(1), etc. or by showing that f has other prop-
erties. Once enough is known about f it should be possible to conjecture some more
general properties of f and prove them, often by using induction.

STEP 1 f(1) > 1. For suppose f(1) = 1. Then 3 = f(f(1)) = f(1) = 1, a contradic-
tion.

STEP 2 f(n) > n. For suppose f(k) ≤ k for some k. Then f(k − 1) < f(k) ≤ k, so
f(k− 1) ≤ k− 1. Repeating this argument k− 1 times we obtain f(1) ≤ 1 in contradic-
tion to step 1. Hence f(n) > n for all n.

STEP 3 f(1) = 2. For suppose f(1) = n ≥ 3. Then 3 = f(f(1)) = f(n) > n ≥ 3, a
contradiction. Hence f(1) = 2.

It is now possible to calculate a number of values.

f(2) = f(f(1)) = 3, f(3) = f(f(2)) = 6,
f(6) = f(f(3)) = 9, f(9) = f(f(6)) = 18,
f(18) = f(f(9)) = 27, f(27) = f(f(18)) = 54

and a pattern is clear. We conjecture f(3n) = 2× 3n and f(2× 3n) = 3n+1.

Next we see that 6 = f(3) < f(4) < f(5) < f(6) = 9, hence f(4) = 7, f(5) = 8
and f(7) = f(f(4)) = 12, f(8) = f(f(5)) = 15.
At this stage it is reasonably clear that there is only one function f which satisfies both
conditions and perhaps a table of values will help.

n f(n) n f(n) n f(n) n f(n)

1 2 8 15 15 22
2 3 9 18 16 23
3 6 10 17 24
4 7 11 18 27 25
5 8 12 19 26
6 9 13 20 27 54
7 12 14 21 28
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There are eight blanks between 9 and 18 and eight numbers between 18 and 27. Hence
f(10) = 19, f(11) = 20, . . ., f(17) = 26. Next

f(19) = f(f(10)) = 30, f(20) = f(f(11)) = 33, . . . , f(26) = f(f(17)) = 51,

f(30) = f(f(19)) = 57, f(33) = f(f(20)) = 60, . . . , f(51) = f(f(26)) = 78, etc.

So we get the following table:

n f(n) n f(n) n f(n) n f(n)

1 2 15 24 29 43
2 3 16 25 30 57 44
3 6 17 26 31 45 72
4 7 18 27 32 46
5 8 19 30 33 60 47
6 9 20 33 34 48 75
7 12 21 36 35 49
8 15 22 39 36 63 50
9 18 23 42 37 51 78
10 19 24 45 38 52
11 20 25 48 39 66 53
12 21 26 51 40 54 81
13 22 27 54 41 55
14 23 28 42 69 56

The rest of the above table can now be filled in. So we conjecture

f(3n) = 2× 3n

f(2× 3n) = 3n+1

f(3n + k) = 2× 3n + k 1 ≤ k < 3n

f(2× 3n + k) = 3n+1 + 3k 1 ≤ k < 3n

The proofs of these are easy by induction and are left to the reader.
Finally 36 = 729, 2.36 = 1458 and 37 = 2187, so 2001 = 2.36 + 543 and

f(2001) = f(2× 36 + 543) = 37 + 3× 543 = 3816.
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