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Trigonometry: Chords, Arcs and Angles

Gerardo Sozio1

Trigonometry, as it is taught in high school using the trigonometric ratios, has an
interesting history. Indeed, it is a relatively recent invention, going back roughly to the
1400’s, although Arab mathematicians developed essentially the same ideas earlier,
but written in a form which we would probably not immediately recognise.

An earlier form of trigonometry, however, can be traced back to the ancient Greeks,
notably to the two mathematicians Hipparchus and Ptolemy. This version of trigonom-
etry was based on chords in a circle. Hipparchus of Bithynia was an astronomer who
was born in 190BC and died in 120BC. He is considered to be one of the most influen-
tial of the early astronomers, and is credited with the founding of trigonometry. His
work highlighted the need for a system that provided a unit of measure for arcs and
angles. The Babylonians divided the circle into 360 parts; the reasons for this, however,
are unclear. They may have chosen 360 since it is divisible by many small integers, or,
more likely, because 360 is the number of days in a year rounded to the nearest ten.

Hipparchus’ trigonometry was based on the chord subtending a given arc in a circle
of fixed radius R.

Figure 1: This figure shows the chord crd(α) subtending an angle α in a circle.

The length of the chord is denoted by crd(α).
Hipparchus and later Ptolemy, gave a table listing α and crd(α) for various values

of the angle α, based on a specific value of R. Ptolemy used the value R = 60, whereas
Hipparchus used a more complicated value, as we shall see below.

Using basic circle properties, we can see from the following diagram that crd(α) is
related to the sine ratio by the equation

1Gerardo Sozio is a Visiting Teaching Fellow in the School of Mathematics, University of New South
Wales.
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sin
(α

2

)
=

1
2
crd(α)

R
, so crd(α) = 2R sin(α

2
). Hence, in a circle of diameter 1, we have

crd(α) = sin(α
2
).

Figure 2: This figure shows the chord crd(α) and the half angle α/2.

Also, using the circle property, that the angle at the centre of a circle is twice the
angle at the circumference subtended by the same arc, it can be seen that in a circle of
diameter 1, the chord which subtends an angle α at the circumference has length sinα.
This is well-defined, since equal chords subtend equal angles.

Figure 3: This figure shows the geometry for which chord crd(α) = sin(α).

Hipparchus knew that 2πR was equal to the circumference of a circle, and taking
3; 8, 30 as the sexagesimal2 approximation for π, the radius R was calculated:

2Sexagesimal represents real numbers in a base 60 system rather than base 10. Time is still measured
in a base 60 system today. The notation 3; 8, 30 is used to represent 3 + 8

60 + 30
602 . Ed.
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C = 2πR

R =
C

2π

=
60× 360

2π

=
6, 0, 0

6; 17

i.e. (6, 0, 0 = 6× 602 + 0× 60 + 0× 1)
(6; 17 = 2× 3; 8, 30 = 2× (3 + 8

60
+ 30

3600
)

= 57, 18

= 3438′

With this radius, the measure of an angle is equal to its radius measure. The mea-
sure of an angle is defined as the length cut off on the circumference divided by the
radius. In calculating the table of chords, Hipparchus began with 60◦, so that the chord
is equal to the radius, since we have an equilateral triangle. Thus crd(60) = 57, 18 in
sexagesimal or 3438′ in minutes.

Now, for a 90◦ angle, the chord is equal to:

R
√

2 = 4862′

= 81, 2 (81× 60 + 2× 1)

So crd(90) = 81, 2 (in sexagesimal).

Figure 4: This figure shows the geometry for a chord subtending a right angle.

To calculate the chords of other angles, Hipparchus used the following geometric
results:

Since the angle in a semi-circle is a right angle, we can use Pythagoras’ Theorem to
obtain

crd(180− α) =
√

(2R)2 − crd2(α).

Thus we only need to find the chords of angles up to 90◦.
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Figure 5: This figure shows two chords, one subtending an angle α and the second
subtending the angle 180− α.

Now, earlier we saw that crd α = 2R sin
(
α
2

)
, and by using this result we can write

crd(180− α) = 2R sin

(
180− α)

2

)
= 2R cos

(α
2

)
.

Again, in a circle of unit diameter, we see that the chord of the supplement of an
angle, is the cosine of half the angle. Notice that,

crd(180− α) =
√

(2R)2 − crd2(α)

2R cos
α

2
=

√
(2R)2 − (2R sin

α

2
)2

(2R)2 cos2
α

2
= (2R)2 − (2R)2 sin2

(α
2

)
i.e. sin2 α

2
+ cos2

α

2
= 1.

Replacing α by 2α, we obtain the well-known result,

sin2 α + cos2 α = 1.

In order to calculate the table of chords, Hipparchus also found a formula for
crd
(α

2

)
. From previous results,

crd
(α

2

)
= DC = BD, so ∠BAD = ∠DAC.

Now, in ∆′s AED and ABD, AE = AB, and AD is common, therefore ∆AED ≡
∆ABD (Side Angle Side).

Hence BD = DE. and since BD = DC, we have DC = DE.
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Figure 6: This figure shows the geometry that Hipparchus used to find a formula for
the chord subtending α/2.

If DF is drawn perpendicular to EC,

then CF =
1

2
CE

=
1

2
(AC − AE)

=
1

2
(AC − AB),

but AC = 2R and AB = crd(180− α), therefore

CF =
1

2
(2R− crd(180− α)).

But ∆ACD|||∆DCF as they have one angle in common and are right angled,

i.e.
AC

CD
=
CD

CF
CD2 = AC · CF

Recall that CD = crd
(α

2

)
, AC = 2R and CF =

1

2
(2R − crd(180 − α)), therefore

crd2
(
α
2

)
= R(2R− crd(180− α)).

Hipparchus used this formula to calculate chords of half angles.
In order to compare this to modern notation, substitute
crd(α

2
) = 2R sin α

4
and crd(180− α) = 2R cos

(
α
2

)
. Then

(
2R sin

α

4

)2
= R

(
2R− 2R cos

α

2

)
sin2 α

4
=

1

2

(
1− cos

α

2

)
,

5



and replacing α by 2α, we have the well-known formula:

sin2 α

2
=

1

2
(1− cosα) .

Here is a table of chords, written in sexagesimal.

Arcs Chords Sixtieths Arcs Chords Sixtieths
1
2

0;31,25 0;1,2,50 6 6;16,49 0;1,2,44
1 1;2,50 0;1,2,50 47 47;51,0 0;0,57,34
11
2

1;34,15 0;1,2,50 49 49;45,48 0;0,57,7
2 2;5,40 0;1,2,50 72 70;32,3 0;0,50,45
21
2

2;37,4 0;1,2,48 80 77;8,5 0;0,48,3
3 3;8,28 0;1,2,48 108 97;4,56 0;0,36,50
4 4;11,16 0;1,2,47 120 103;55,23 0;0,31,18
41
2

4;42,40 0;1,2,47 133 110;2,50 0;0,24,56

Many of the trigonometric formulae for the sum or difference of two angles, for
multiples and for half-angles, can all be derived from a proposition known as Ptolemy’s
Theorem. It states that if the four vertices of a quadrilateral are concyclic, then the sum
of the products of the opposite sides is equal to the product of the diagonals of the
quadrilateral.

Figure 7: This figure shows the geometry for Ptolemy’s Theorem in which the four
vertices of a quadrilateral are concyclic.

Proof: In the cyclic quadrilateral ABCD, choose X on AC such that ∠ABX = ∠DBC.

Now ∠ABD = ∠XBC (as ∠XBD is common),
and ∠BDA = ∠BCA (since angles standing on the same arc are equal).

In triangles ABD and XBC, ∠BAD = ∠BXC (remaining angle in triangle), then
∆ABD|||∆XBC (Angle Angle). Hence,

BD

AD
=
BC

XC
(sides in same ratio)

i.e. AD ·BC = BD ·XC.
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Similarly, since ∠BAC = ∠BDC

∆ABX|||∆DBC (Angle Angle).

Hence,
AB

AX
=
BD

CD
i.e. AB · CD = BD · AX .

Summarising these results we have;

AB · CD = BD · AX
AD ·BC = BD ·XC

Then AB · CD + AD ·BC = BD · AX +BD ·XC
= BD (AX +XC)

but AX +XC = AC, therefore
AB · CD + AD ·BC = BD · AC.

This theorem can be applied to the calculation of chords, where either a side or a diag-
onal coincides with a diameter of the circumscribed circle.

Figure 8: This figure shows the geometry for a cyclic quadrilateral with one side being
the diameter of length one.

In the figure, AB is a diagonal and also a diameter of length one. Thus, as was
shown previously, if ∠CBA = α and ∠DBA = β, then AC = sinα,AD = sin β, CB =
cosα and BD = cos β. Note that CD = sin(α + β).

Now applying Ptolemy’s Theorem, remembering AB = 1, we have

AB · CD = AC ·BD +BC · AD
i.e. sin(α + β) = sinα · cos β + cosα · sin β.

Now suppose we take a cyclic quadrilateral with one side being the diameter of
length one. Let ∠ABC = α, ∠ABD = β then, as before,AC = sinα, AD = sin β, CB =
cosα, DB = cos β and
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Figure 9: This figure shows the geometry for a second cyclic quadrilateral with one
side being the diameter of length one.

DC = sin(α− β).

Now, once again applying Ptolemy’s Theorem, we have

AC ·BD = DC · AB + AD ·BC
sinα cos β = sin(α− β) .1 + sin β cosα

i.e. sin(α− β) = sinα cos β − cosα sin β.

Finally, we again take a cyclic quadrilateral with one side as a diameter, and we choose
CD = BD. Then if ∠CAB = θ, we have ∠CAD = ∠DAB = θ

2
, (since equal arcs

subtend equal angles). We can again express each of the sides in terms of trigonometric
ratios and apply Ptolemy’s Theorem to obtain:

Figure 10: This figure shows the geometry for the cyclic quadrilateral used to establish
the dichotomy formula.

8



sin
θ

2
+ sin

θ

2
cos θ = cos

θ

2
sin θ.

Dividing by sin
θ

2
, we have 1 + cos θ = cot

θ

2
sin θ.

Hence tan
θ

2
=

sin θ

1 + cos θ
×
(

1− cos θ

1− cos θ

)
=

sin θ(1− cos θ)

1− cos2 θ

=
1− cos θ

sin θ

∴ tan
θ

2
= cosec θ − cot θ.

This is referred to as the dichotomy formula, and some form of it was used by Archimedes
in the computation of π some 400 years prior to Ptolemy.

As mentioned earlier, the origins of trigonometry lie in the world of astronomy and
spherical triangles. It was Regiomontanus who introduced trigonometry into a form
that we would recognise today. Born Johann Müller, Regiomontanus took his name
from the latinized form of his hometown, Königsberg, ‘King’s Mountain’. He was
born in 1436 and died in 1476. Early on in his life he studied at home, then he was
sent to Vienna at age 12 where he received his Bachelor’s degree at age 15. His most
influential work was his ‘De triangulis omnimodis’ (On triangles of every kind) which
was a work in five parts. In part one of the book he introduces the sine function to
solve a right angled triangle; and in book two he introduces trigonometry proper with
the Law of Sines.

The formula for the area of a triangle given two sides and the included angle (A =
1
2
ab sinC) also appears here for the first time. It was written as:

If the area of a triangle is given together with the rectangular product of the
two sides, then either the angle opposite the base becomes known, or (that
angle) together with (its) known (exterior) equals two right angles.

He also deals with spherical geometry and trigonometry in the remaining three
books, but never used the tangent function, although it was obvious that he was famil-
iar with it.

The following problem was posed by Regiomontanus in 1471:
At what point on the ground does a perpendicular suspended rod appear largest

(i.e. subtends the greatest visual angle)?
In other words, if the rod AB at height b above the ground above 0 is viewed from a
point X , at what distance will AB subtend the largest angle θ?
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Figure 11: This figure shows the geometry for Regiomontanus’ problem.

In the diagram,

cot θ = cot(α− β)

=
1

tan(α− β)

=
1 + tanα tan β

tanα− tan β

=
1 + 1

cotα cotβ

1
cotα
− 1

cotβ

=
cotα cot β + 1

cot β − cotα

Let OX = x, then cotα =
x

a
and cot β =

x

b
, therefore

cot θ =

(
x
a

) (
x
b

)
+ 1(

x
b

)
−
(
x
a

) =
x2 + ab

x(a− b)

=
x

a− b
+

ab

(a− b)x
.

Let u =
x

a− b
and v =

ab

(a− b)x
. The arithmo-geometric inequality states that if

u, v ≥ 0 then u+ v ≥ 2
√
uv. Applying this inequality, we have:

cot θ = u+ v ≥ 2
√
uv =

2
√
ab

a− b
.

To maximise θ, cot θ needs to be minimised, this occurs when u = v, that is, when
x

a− b
=

ab

(a− b)x
⇒ x =

√
ab. Thus, the point x is to be located at a distance equal to

the geometric mean of the altitudes of the endpoints of the rod, measured horizontally
from the foot of the rod.
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The origin of the term ‘sine’ seems to have originally come from India and was
adopted by Arab mathematicians. It was originally referred to as ‘jya-ardha’ which
meant ‘chord-half’, and was at times shortened to ‘jiva’. The Arab mathematicians
phonetically derived the meaningless word ‘jiba’, and it was written in Arabic without
vowels as ‘jb’. This was later interpreted as ‘jaib’ which means ‘breast’. After King
Alfonso of Castile conquered Toledo in 1085 and captured a large library including
many Arab manuscripts, scholars were hired to translate these books into Latin. The
Latin word for ‘breast’ is ‘sinus’, which also means ‘bay’ or ‘gulf’. This Latin word
then became ‘sine’. Some sources suggest that the Latin term ‘sine’ was introduced
by Robert of Chester (1145), while others suggest it was introduced by Gherardo of
Cremona (1150). In English, it seems the earliest use of sine was in 1593 by Thomas
Fale.

With the need to find the sine of the complementary angle, cosine was introduced
by Edmund Günter in 1620. It was originally written as ‘co.sinus’, short for ‘comple-
menti sinus’. Co.sinus was later modified to cosinus by John Newton (1658).

The word tangent was introduced by Thomas Fincke in (1583) from the Latin word
‘tangere’ which means ‘to touch’. Francois Vieta (1593) was not comfortable with the
word tangent because of its meaning in geometry, and so he used the term ‘sinus foe-
cundarum’.

Secant, introduced by Thomas Fincke, comes from the Latin ‘secare’, which means
‘to cut’ (1583). Once again, Vieta (1593) was not comfortable with this as it could have
been confused with the geometric term, hence he used ‘transsinuosa’. The cosine of an
angle is the sine of the complementary angle, the cotangent of an angle is the tangent
of the complementary angle and cosecant is the secant of the complementary angle.
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edu/titles/10065.html
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