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The Fibonacci Pi Series
Samuel Power1

The purpose of this paper is both to observe, understand and appreciate the link be-
tween the Fibonacci sequence and the ubiquitous mathematical constant, π. It proves
the following series for π, making use of the Fibonacci numbers.

π =
∞
∑

n=1

∞
∑

k=0

4 · (−1)k

(2k + 1)(F2n+1)2k+1
(0.1)

where Fn is the nth Fibonacci number. The derivation of this identity employs several
different mathematical concepts.
Angle Sum Formulae
We begin with the well-known trigonometric sum formulae:

sin(A+ B) = sin(A) · cos(B) + cos(A) · sin(B) (0.2)

cos(A+ B) = cos(A) · cos(B)− sin(A) · sin(B). (0.3)

By dividing these expressions, we obtain a corresponding formula for the tangent:

tan(A+ B) =
sin(A+ B)

cos(A+ B)
=

tan(A) + tan(B)

1− tan(A) · tan(B)
(0.4)

Inverse Tangent Addition Formula
To advance further, we now consider the inverse tangent function tan−1(x). Taking A
and B as tan−1 x and tan−1 y respectively, we see that:

tan(tan−1(x) + tan−1(y)) =
tan(tan−1(x)) + tan(tan−1(y))

1− tan(tan−1(x)) · tan(tan−1(y))
=

x+ y

1− x · y
(0.5)

Hence

tan−1(x) + tan−1(y) = tan−1

(

x+ y

1− x · y

)

(0.6)

To gain another similar result, which is very relevant to our proof, we take the recipro-
cals of both A and B, which shows:

tan−1

(

1

x

)

+ tan−1

(

1

y

)

= tan−1

(

x+ y

x · y − 1

)

(0.7)

1Samuel Power recently completed his International Baccalaureate through the Sydney Church of
England Co-educational Grammar School
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The Fibonacci Sequence

We first define the Fibonacci Numbers, the most common definition being:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (0.8)

Using this definition of the Fibonacci Numbers to advance our proof, we first prove
that the following identity holds:

F 2

2n+1 − F 2

2n = 1 + F2n · F2n+1 (0.9)

We can show this through induction. Let P (n) denote the following proposition

P (n) = F 2

2n+1 − F 2

2n − 1− F2n · F2n+1 = 0 for all n ≥ 0 (0.10)

P (0) is clearly true. Now, let k be an integer for which P (k) is true, that is:

F 2

2k+1 − F 2

2k − 1− F2k · F2k+1 = 0 (0.11)

We now consider:
F 2

2k+3 − F 2

2k+2 − 1− F2k+2 · F2k+3 (0.12)

Using the Fibonacci sequences defining recursion, we can see that:

F2k+2 = F2k+1 + F2k (0.13)

and
F2k+3 = F2k+2 + F2k+1 = 2F2k+1 + F2k (0.14)

The previous expression for(12) now becomes:

(2F2k+1 + F2k)
2 − (F2k+1 + F2k)

2 − 1− (F2k+1 + F2k) · (2F2k+1 + F2k) (0.15)

After expanding and collecting like terms, we arrive at:

F 2

2k+1 − F 2

2k − 1− F2k · F2k+1 (0.16)

Note that this is the same as the expression for P (k), which is also equal to zero by the
inductive hypothesis. As P (0) is true, and P (k) implies P (k + 1), we can say that P (n)
is true for n ≥ 0.
Inverse Tangent Addition with Fibonacci Numbers
Returning to the inverse tangent addition formula, we note that:

tan−1

(

1

2

)

+ tan−1

(

1

3

)

= tan−1

(

2 + 3

2 · 3− 1

)

= tan−1

(

1

1

)

(0.17)

tan−1

(

1

5

)

+ tan−1

(

1

8

)

= tan−1

(

5 + 8

5 · 8− 1

)

= tan−1

(

1

3

)

(0.18)
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tan−1

(

1

13

)

+ tan−1

(

1

21

)

= tan−1

(

13 + 21

13 · 21− 1

)

= tan−1

(

1

8

)

(0.19)

Thus we can represent tan−1(1) as a sum of several smaller arctangents, viz,

tan−1(1) = tan−1

(

1

2

)

+ tan−1

(

1

5

)

+ tan−1

(

1

13

)

+ tan−1

(

1

21

)

(0.20)

Note the denominators correspond to odd-indexed Fibonacci numbers (F1, F3, F5, etc.)
truncated by the following even-indexed Fibonacci number. This suggests the gener-
alisation:

tan−1(1) = tan−1

(

1

F2m+2

)

+
m
∑

n=1

tan−1

(

1

F2n+1

)

(0.21)

We can prove this conjecture by induction. Let P (m) denote the following proposition:

P (m) =
π

4
= tan−1(1) = tan−1

(

1

F2m+2

)

+
m
∑

n=1

tan−1

(

1

F2n+1

)

(0.22)

for natural numbersm ≥ 1. We begin with the P (1) case:

P (1) = tan−1

(

1

F4

)

+ tan−1

(

1

F3

)

(0.23)

= tan−1

(

1

3

)

+ tan−1

(

1

2

)

= tan−1

(

2 + 3

2 · 3− 1

)

(0.24)

= tan−1(1) =
π

4
(0.25)

Hence, P (1) is true. Now, let k be an integer for which P (k) is true, that is,

P (k) =
π

4
= tan−1(1) = tan−1

(

1

F2k+2

)

+
k

∑

n=1

tan−1

(

1

F2n+1

)

(0.26)

Now, consider:

P (k + 1) = tan−1

(

1

F2k+4

)

+
k+1
∑

n=1

tan−1

(

1

F2n+1

)

(0.27)

Expanding and rearranging, this can be expressed as:

P (k + 1) = tan−1

(

1

F2k+2

)

+ tan−1

(

1

F2k+3

)

+tan−1

(

1

F2k+4

)

− tan−1

(

1

F2k+2

)

+
k

∑

n=1

tan−1

(

1

F2n+1

)

(0.28)
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Using the inductive hypothesis, the first two parts of this evaluate to π

4
, becoming:

π

4
+ tan−1

(

1

F2k+3

)

+ tan−1

(

1

F2k+4

)

− tan−1

(

1

F2k+2

)

(0.29)

As we wish to show that the entirety of this expression evaluates to π

4
, we need to show

that the remaining part of the expression evaluates to 0, that is,

tan−1

(

1

F2k+3

)

+ tan−1

(

1

F2k+4

)

− tan−1

(

1

F2k+2

)

= 0 (0.30)

This can also be stated as:

tan−1

(

1

F2k+3

)

+ tan−1

(

1

F2k+4

)

= tan−1

(

1

F2k+2

)

(0.31)

By shifting the index from k+1 to k, this can be stated simply in terms of F2k and F2k+1

as:

tan−1

(

1

F2k+1

)

+ tan−1

(

1

F2k + F2k+1

)

= tan−1

(

1

F2k

)

(0.32)

Using our previous arctangent addition formula, we condense this to:

tan−1

(

F2k + 2F2k+1

F2kF2k+1 + F 2
2k+1

− 1

)

= tan−1

(

1

F2k

)

(0.33)

As both sides of the equation are expressed in terms of the inverse tangent, we take the
tangent of both sides and rearrange slightly to arrive at:

F 2

2k + 2F2kF2k+1 = F2kF2k+1 + F 2

2k+1 − 1 (0.34)

Rearranging further:
F 2

2k+1 − F 2

2k − 1− F2kF2k+1 = 0 (0.35)

As we have already proven that this expression is equal to zero, the inductive proof is
complete, and we can say that

π

4
= tan−1(1) = tan−1

(

1

F2m+2

)

+
m
∑

n=1

tan−1

(

1

F2n+1

)

(0.36)

for any natural number m/ge1. In addition, since Fm → ∞ as m → ∞, we can say that
1

Fm

→ 0, and similarly, 1

F2m+2
→ 0. Thus, taking a limit as m → ∞, we can omit the

extra term, and express it as an infinite series, such that:

π

4
= tan−1(1) =

∞
∑

n=1

tan−1

(

1

F2n+1

)

(0.37)
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Power Series
Our next step is to express the inverse tangent as a power series. Many functions f(x)
can be expressed as an infinite power series

f(x) =
∞
∑

n=0

anx
n (0.38)

where an are a set of coefficients determined by the behaviour of f(x). The simplest
such series arises from the geometric series.

Consider:
f(x) = 1 + x+ x2 + x3 + . . . (0.39)

It is well-established that f(x) = 1

1−x
. The ratio test shows that this series converges to

the function only within the domain −1 < x < 1. This can be summarised succinctly
as:

∞
∑

n=0

xn =
1

1− x
for |x| < 1 (0.40)

Replacing x with −x2, we can see that:

∞
∑

n=0

(−x2)n =
1

1− (−x2)
(0.41)

∞
∑

n=0

(−1)nx2n =
1

1 + x2
(0.42)

The Inverse Tangent Power Series
It is well known that power series may be integrated term by term on their interval of
convergence. Applying this here, we see that:

∫ ∞
∑

n=0

(−1)nx2ndx =

∫

dx

1 + x2
(0.43)

∞
∑

n=0

∫

(−1)nx2ndx = tan−1(x) + c (0.44)

∞
∑

n=0

(−1)nx2n+1

2n+ 1
= tan−1(x) (0.45)

(checking that c = 0 by substituting x = 0).
A simple application of the ratio test shows that this power series is only valid

on the interval −1 < x < 1. It is known that this infinite series also converges to
the function f(x) = tan−1(x) on the boundary of its radius of convergence, that is, at
x = −1 and x = 1.
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Having arrived at an infinite series expansion for f(x) = tan−1(x), it is tempting to
simply substitute in x = 1 and multiply by 4 to approximate a value for π 2. However,
the problem with this is the rate of convergence of the series.

Consider:
10
∑

n=0

4 · (−1)n

2n+ 1
(0.46)

Taking ten terms of this series returns a π value of 3.232, having no decimal places
of accuracy to the actual value of π (3.142. . . ). However, when x is a much smaller
number, the approximation to the arctangent function converges much faster, as the
terms are similarly smaller. For this reason, we prefer to express π in terms of the
arctangent of smaller ratios, greatly accelerating the rate of convergence.
Final Proof
Let us now put together the three key facts we have established

π

4
= tan−1(1) (0.47)

tan−1(1) =
∞
∑

n=1

tan−1

(

1

F2n+1

)

(0.48)

∞
∑

n=0

(−1)nx2n+1

2n+ 1
= tan−1(x) (0.49)

From (46) and (47),
π

4
=

∞
∑

n=1

tan−1

(

1

F2n+1

)

(0.50)

From (48),

tan−1

(

1

F2n+1

)

=
∞
∑

k=0

(−1)k

(2k + 1) · (F2n+1)2k+1
(0.51)

Substituting (50) into (49), we have:

π

4
=

∞
∑

n=1

∞
∑

k=0

(−1)k

(2k + 1) · (F2n+1)2k+1
(0.52)

Transposing the factor of 4 across to the other side of the equation, we arrive at

π =
∞
∑

n=1

∞
∑

k=0

4(−1)k

(2k + 1) · (F2n+1)2k+1
(0.53)

This is the desired identity - the Fibonacci Pi Series.
Convergence Rates

2This method is known variously as the Leibniz, Gregory or Madhava series method.
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We must consider its rate of convergence to π relative to alternate methods. Defining

πa,b =
a

∑

n=1

b
∑

k=0

4(−1)k

(2k + 1) · (F2n+1)2k+1
(0.54)

We now construct a table of values for some different values of a and b.

a b πa,b Error=|πa,b − π|
1 1 1.83333333333 ≈ 100

5 5 3.11378443244 ≈ 10−2

10 10 3.14136682211 ≈ 10−4

10 25 3.14136680525 ≈ 10−4

25 10 3.14159267033 ≈ 10−8

50 20 3.14159265359 ≪ 10−8

The table demonstrates that large values of a are much more efficient than large
values of b in the accurate computation of π.

This is because taking higher values of b only results in more accurate computation
of the individual arctangent values, which converge more quickly than the sum as a
whole. By contrast, the value of a allows for the arctangent terms to be summed much
more rapidly.

Those seeking to calculate π using a truncated form of our infinite Fibonacci Pi
Series should use the largest possible value of a for their approximation and relatively
smaller values of b.
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