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1 Introduction

I have always loved math for as long as I can remember. Ever since I was little, I
wanted to one day contribute something new to mathematics. That day finally came;
one day during the last summer, I was sitting and relaxing at a coffee shop. I saw a
small spinning water wheel model. For no particular reason, I started to google wheel
related contents. After reading some random pages across the Internet, I came across
the article Wheel graph on Wikipedia. My first impression was, “Wow, everything can
be related to math!” I was curious enough to read more about it later on and eventually
came up with some original questions. I then started my research on it with a friend.
Our research was fruitful after some effort.

When I first asked my friend to collaborate on this research, she asked me: “What is
it good for?” This question took me by surprise. I never thought about the application
of this. Well, I thought about it and told her: “Because it is beautiful and fun.” Mathe-
matical knowledge is beautiful in and of itself. Sometimes, the only way to appreciate
its beauty is to let your imagination fly (for example, there is no way to depict a true
four dimensional space since we only perceive three spatial dimensions). The Greek
mathematicians were pioneers in pure mathematics who found the knowledge wor-
thy on its own. They were among the first who truly appreciated the absolute value of
mathematics. There is probably infinite knowledge out there. We are merely explorers
of infinity, and there is much more waiting for a daring explorer to discover. While it
is true that this research is in no way revolutionary, its beauty remains attractive to me.
In this paper, we are going to explore how many dimensions it takes to embed a wheel
graph with multiple hubs in Euclidean space.

Mathematics is everywhere among us. One of Parabola’s more recent papers might
have been inspired by ordinary objects such as the street tiling found in Cairo. In my
case, it was the water wheel. Hence, next time you want aspiration for a mathemat-
ics problem, just look around your house; there may be an inspirational object laying
around somewhere.

1Phu Nguyen and Ngan Le are college students at University of Wisconsin, Madison (USA) and
McGill University (Canada).
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2 History

About half a century ago, Paul Erdös and his research associates [?] invented the idea
of a wheel graph and proved some results on these graphs. Erdös was one of the most
prolific mathematicians of the 20th century. In popular mathematics culture, he was
perhaps most known through the Erdös number which was created due to his massive
number of collaborations around the world. The Erdös number is the collaborative
distance from Erdös. An Erdös number of 1 means that person has co-authored with
Erdös, and a number of 2 is a person who has co-authored with someone with an Erdös
number of 1. Fun fact: a famous 18th century mathematician, Pierre-Simon Laplace,
has an Erdös number of 14 [9].

About two decades later, two mathematicians, Fred Buckley and Frank Harary [?],
proved results on the embeddings of wheel graph. Three decades later, my friend
and I happened to run across this problem by ourselves and proved similar results,
presented here in this paper. Little did we know that our problem can be traced back
over half a century ago. However, Parabola’s editor Thomas Britz pointed this out, and
it was such an honor for us to work on a problem that was introduced by someone like
Erdös. This opens our eyes for some bigger meaning that mathematics is a continuous
flow that connects the past to the present and beyond, and we are glad to take a part
in this flow.

3 Non-crossing Euclidean embeddings of wheel graphs

The wheel graph Wn consists of n dots, called vertices, n − 1 of which are connected
circularly by lines, called edges, and which are also connected by edges to a central
vertex, called the hub. The non-hub vertices are called rim vertices. By allowing k hubs,
we can define the more general wheel graphs W k

n . Here are two small wheel graphs.

W4 W5

In this paper, we are trying to answer the question:

What is the smallest dimension m for which the wheel graph W k
n can be drawn in Rm

so that all edges have length 1 and are not allowed to cross?

We will call such a drawing of W k
n a non-crossing Euclidean embedding in Rm. This

smallest dimension m is called the non-crossing Euclidean dimension and is denoted
by e(W k

n ). Euclidean embeddings of wheel graphs and other graphs, where crossing
were allowed, were studied by Paul Erdős, Frank Harary, William Tutte and others;
see [1–8]. Our results are related to their results but are different due to the restriction
of edges not being allowed to cross.
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4 One hub

We first consider wheel graphs with just one hub.

Theorem 1. e(Wn) =

{
2 , n = 7

3 , n 6= 7

Proof. For W4, draw the three rim vertices as the points of an equilateral triangle in
the xy plane of R3, centered in (0, 0, 0). We now draw the hub on the z-axis, at (0, 0, z).
It is easy to see that z can be found so that all edges of W4 have unit length. Thus,
e(W4) = 3.

We can use this construction to draw any wheel Wn in R3. For suppose that we
have a non-crossing Euclidean embedding of Wn. Then consider any two rim vertices
u and v that are connected by an edge. Together with the hub, these vertices and their
connecting edges form an equilateral triangle. By our construction, we can find another
vertex w so that all four vertices are at unit distance to each other. Now draw an edge
from w to the hub and to u and v, and delete the edge between u and v. This gives a
non-crossing Euclidean embedding of Wn+1 in R3, so, by induction, e(Wn) ≤ 3 for all n.

The wheel graph W7 is the only wheel graph that has a unit embedding in R2:

W7

5 Two hubs

We now consider non-crossing Euclidean embeddings of wheel graphs of two hubs,
such as the following:

W 2
5 W 2

6
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Theorem 2. e(W 2
n) = 3 for n = 5, 6, 7 and e(W 2

n) ≥ 4 for n ≥ 8.

Proof. If W 2
n has a non-crossing embedding in Rm, then so has Wn−1; just delete one of

the two hubs and its incident edges from W 2
n to get Wn−1 (both have n−2 rim vertices).

Therefore, e(W 2
n) ≥ e(Wn−1) = 3 for n 6= 8. For n = 5, 6, 7, the constructions for Wn−1 in

the proof of Theorem 1 can be used to construct non-crossing Euclidean embeddings
in R3 for W 2

n . In particular, the rim vertices all lay in a plane so add the hub vertex and
its incident edges are are mirror images in this plane of the first hub and its inciddents
edges. This shows that e(W 2

n) ≤ 3 for n = 5, 6, 7, so e(W 2
n) = 3 for these values.

For n ≥ 8, assume that e(W 2
n) = 3. Then e(W 2

n) has a non-crossing Euclidean
embedding in R3. The rim vertices lie at distance 1 from each hub and therefore lie
in the intersection of the two unit spheres around the two hubs; that intersection is a
lower-dimensional sphere, namely a circle. If no edges may cross, then the rim vertices
must lie evenly on a circle with the edges forming a convex (n − 2)-gon. However,
the distance from the rim vertices to each hub is then 1 when n = 8 or more when
n ≥ 9, so there cannot be two hubs when n = 8 or indeed any hub when n ≥ 9. This a
contradiction, so e(W 2

n) ≥ 4.

6 Arbitrarily many hubs

We now consider non-crossing embeddings of W k
n with n ≥ 3 hubs. Ignoring the trivial

cases in which there are at most two rim vertices, we have the following theorem.

Theorem 3. For k ≥ 3, e(W k
n ) =

{
4 , n− k ∈ {3, 4, 5}
5 , n− k ≥ 6 .

Proof. Suppose that there are n − k ≥ 3 rim vertices and assume that there is a non-
crossing embedding of W k

n in R3. Then the rim vertices lie at equal distance to any two
hubs and thus lie in a plane. This is true of each three of the pairs of hubs considered,
so the rim vertices line in the intersection of three planes, which is either a point or a
line. But this cannot be since the rim vertices cannot then have unit distances between
any two of them. Therefore, e(W k

n ) ≥ 4.
Now consider the case in which there are exactly n−k = 3 rim vertices, respectively.

Define the three rim vertices to lie at points of the form (x, y, 0, 0) where x2 + y2 = 1
3
;

these form an equilateral triangle with side lengths 1. We will now choose three hub
vertices with coordinates of the form (0, 0, z1, z2). These must necessarily satisfy the
equation

x2 + y2 + z21 + z22 = 1

where x and y are the first two coordinates of any rim vertex. Since x2 + y2 = 1
3
, the

hub vertices must satisfy the equation

z21 + z22 =
2

3
;

choose a set of k solutions for the k hub coordinates. Drawing lines between rims and
hubs provides us with non-crossing embeddings of W k

n in R4, so e(W k
n ) = 4.
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The cases in which there are n− k = 4 or n− k = 5 rim vertices are similar: instead
of an equilateral triangle, draw a square and a pentagon, respectively.

Now consider the case in which we have n − k ≥ 6 rim vertices. Use the previ-
ously described inductive construction to obtain a non-crossing Euclidean embedding
of Wn−k+1 in R3. By adding two zero coordinates to each of the vertices (w, x, y) in
Wn−k+1, we now have one hub and n − k rim vertices drawn as points (w, x, y, 0, 0) in
R5. Now, in the same was as above, find hub vertices of the form (0, 0, 0, z1, z2). Draw-
ing lines between rims and hubs provides us with non-crossing embeddings of W k

n in
R5, so e(W k

n ) = 5.
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[2] P. Carmi, V. Dujmović, P. Morin, and D.R. Wood, Distinct distances in graph
drawings, Electron. J. Combin. 15 (2008), no. 1, Research Paper 107, 23 pp.
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[4] P. Erdős, F. Harary, and W.T. Tutte, On the dimension of a graph, Mathematika 12
(1965), 118–122.

[5] F. Harary, Graph Theory, Reading: Addison-Wesley, 1969.

[6] F. Harary and R. Melter, The graphs with no equilateral triangles, Gaz. Mat.,
Bucur. 3 (1982), 182–183.

[7] B. Horvat and T. Pisanski, Products of unit distance graphs, Discrete Math. 310
(2010), 1783–1792.
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