
Parabola Volume 55, Issue 1 (2019)

Random walks: an application for detecting bias in Spider
Solitaire programs

Trevor Chi-Yuen Tao1

1 Introduction

Games such as Klondike, Freecell and Spider Solitaire are popular pastimes for play-
ers, available on personal computers or phones. However, a common complaint is
these software programs can cheat if the player’s win rate is too high. For instance,
Microsoft Hearts (a game for four players) has been considered unfair by some play-
ers since they receive too many bad hands if the win rate exceeds a certain threshold.
Such claims are often difficult to substantiate without supporting evidence, and it is
possible that players are playing below their best or have “selective memories” (e.g.,
they are more apt to remember painful losses than easy wins). A particularly striking
example of false accusation is Backgammon NJ for the Android phone. Many weak
players accused the AI of cheating by loading the dice, and the programmer(s) were
forced to provide evidence such as computer rollouts to refute such accusations.2 For-
tunately, basic knowledge of statistics and probability is enough to avoid unfounded
accusations. It is now common knowledge that many Backgammon programs such as
TDGammon [1] can compete with or even outperform the best human players.

2 Random Walks

2.1 Movement between states

Let us assume that a computer scientist is new to Chess and that their task is to de-
termine which side has an advantage given a game state. One idea may be to pretend
that two monkeys make random moves for both sides until the game ends. To be more
specific, in any game state S we can compute N , the number of legal options available
for the side to move. We can then stipulate that each legal move occurs with probabil-
ity 1/N . We can simulate many games of random moves starting from state S and tally
the results. For instance, we might find that in 1000 games, White wins 400 games,
draws 300 and loses 300. Since White had more wins than losses, we might guess that
the game state S favours White. Assuming one point for a win and half a point for

1Trevor Tao has a PhD in applied mathematics. He is a research scientist currently working for the
Australian Department of Defence. Trevor is a keen chess and scrabble player and his other hobbies
include mathematics and music. Trevor is the brother of world-renowned mathematician Terence Tao.

2http://www.njsoftware.com/note.html

1

http://www.njsoftware.com/note.html

a draw, White will expect to win 0.55 points per game so we can say that S has an
equity of 0.55 for the White player. The sequence of moves from S to a final position is
known as a random walk. Obviously, this example is impractical for tournament games
because human players do not make random moves. But the important point is that
we are able to (in theory) associate an equity to any game state.

A simpler example of a random walk is the well-known phenomenon of Gambler’s
Ruin. Suppose that a gambler starts with $100 and wins or loses a dollar with proba-
bility 0.5. The gambler continues to play until either broke or has doubled their capital.
Any state of the random walk can be represented by the gambler’s current capital. If
we define the equity of a state to be the probability of the gambler reaching $200, then
it is easily shown that the initial equity is 0.5. However, if the probability of winning
a dollar were reduced to 18/38 (e.g., betting on Red on a Roulette Wheel with double-
zero), then the equity becomes almost zero! One can verify this with some algebra or
computer simulation. It turns out that

E(I) =

i

200
if p = 0.5 ;

pi − (1− p)i

p200 − (1− p)200
otherwise .

where E is the equity, p is the probability of winning an individual game and i is the
gambler’s capital.

2.2 Evaluating individual states

Incidentally, assigning a value to game states is nothing new. A familiar example is the
minimax or alpha beta pruning algorithm [2] to determine the best move in two-player
strategy games. Although such algorithms are outdated by modern standards, they are
often used in teaching computer science courses at undergraduate level. Each state in
a tree receives a “static” evaluation which does not depend on neighbouring game
states. For instance, in chess we can evaluate features such as piece mobility, control of
the centre and king safety. One problem is that choosing which features to include for
evaluation is non-trivial. Also, it is difficult to quantify the features described above.
In contrast, random walks avoid such problems since we only need to enumerate the
set of legal moves in any game state. Of course, I do not claim that random walk
algorithms can compete with the likes of Magnus Carlsen or Garry Kasparov! Never-
theless, random walk methods have found serious use in many applications. Examples
include Brownian motion [3], sampling social networks [4], text classification [5] and
animal movement [6].

2

3 Spider Solitaire

3.1 Win Rate for Games With/Without Undo

Spider Solitaire is a card game for one player. There are two decks of cards and the
player aims to organise cards into eight complete suits and remove them from the
tableau. Cards can be dealt from the stock or moved from one column to another
according to certain rules. The rules will not be discussed in detail; it is assumed the
reader already has some knowledge of rules and basic strategy since this information
is easily found online. Although many researchers have analysed Spider Solitaire, it is
tacitly assumed that undo is allowed, and the task is to find at least one sequence of
moves that results in victory. It turns out that nearly every game is winnable, even at
the 4-suit level (c.f. [7] and references therein). I am unaware of any research into the
probability of winning a game without undo.

There are two fundamental ways in which to modify the difficulty of winning a
game of Spider. Firstly, the number of suits can be 1, 2 or 4 with more suits indicating
higher difficulty, but this is always determined by the player. The second way is to
rearrange the starting layout. As an extreme example, it is easy to construct an initial
game state so that no face-down cards in the tableau can be exposed with any sequence
of legal plays. In general, this is not controlled by the player, and they may suspect that
the cards are stacked after a series of losses.
Most players find it difficult to win games at the 4-suit level. But Steve Brown gives
some detailed strategies in [8] and reports a win rate of 48.7% over 306 games. More-
over, he achieves this without undoing any moves, restarting or rejecting games with
poor initial state. He also points out his play is not perfect and an expert player could
do even better, perhaps with a win rate in excess of 60%. By experimenting with
Brown’s strategies, I am indeed able to achieve a win rate in excess of 48.7% without
undo, restart or rejecting games.

3.2 The ideal unbiased Spider Solitaire program

We know that Spider Solitaire is played with 2 decks of standard playing cards. If we
ignore the equivalence of cards with the same rank and suit, the number of possible
starting states is 104! = 104 × 103 × · · · × 1 ≈ 1.03 × 10166. It is natural to assume that
each starting game state will occur with equal probability. Certainly, this is what one
would expect if the game was played manually and assuming perfect shuffling. Let us
say that a Spider Solitaire program that assigns equal probability to all starting states
is unbiased.

During the course of the game, a player will expose cards, either by turning over
face-down cards in the tableau or dealing from the stock. The probability distribution
of possible initial game states is updated accordingly whenever a move exposes at least
one more card. This allows one to theoretically compute the probability of winning
any game state, given perfect play. For instance, suppose that in the endgame only

3

Figure 1: An example initial stage with 8 legal moves and 3 guaranteed turnovers.

five (5) cards are unseen, one of which is the Queen of Spades. Assume that an expert
player determines that a win is guaranteed if the next exposed card is the Spade Queen.
Then the chance of victory is at least 20%. If any card other than the Queen of Spades
guarantees a loss, then the chance of victory is exactly 20%. Of course in practice, it
is impossible to compute winning probabilities with many cards unseen, and human
players must “guess” the optimal line of play.

In an earlier report [9], I investigated whether a Spider Solitaire program can be
proved biased using the static evaluation methods described in Section 2. For instance,
given an initial game state, we can compute the number of “guaranteed turnovers”
(see Figure 1) even if the worst possible cards were exposed. However, I did not find
enough evidence to prove that it was biased.

4 Experiment

4.1 Free Spider Solitaire Server

We wish to answer the following question: if a player wins too many games, does
Spider Solitaire then arrange the cards to make it harder for the player to win?

I played 40 games of Spider on the Free Spider Solitaire (FSS) server3 at the 4-suit
level. For purposes of this report, I allowed myself to undo moves for two reasons:
firstly, this ensured that I was able to win every game, thus giving the program more
“incentive” to stack the cards unfavourably in later games and hence more chance of
proving that the program is indeed biased. Secondly, I needed to record the identity
of every face-down card so I could simulate random walks as described above and
compute the equity. If the program was unbiased, I would expect every hand to have
random equity. But if the program was biased, then I would expect games would
become harder to win as I accumulated more victories.4 As an (admittedly contrived)

3https://www.free-spider-solitaire.com/
4Note that with this methodology it is impossible for the player to change the equity of an individual

game by making sub-optimal moves, intentionally or otherwise.

4

analogy, suppose you participate in a Chess tournament in which each game had a
computer-generated random initial state instead of the usual starting configuration.
After completing the tournament you review the games and simulate random moves
as described above. You then find that the initial states always favoured a grandmaster
whenever his opponent was not a grandmaster. Even though the random moves from
both sides were far from optimal(!), you would probably suspect something was wrong
with the program that generated the initial states. A similar method can be used to
detect bias in Spider Solitaire.

4.2 Spider Monkey Algorithm

We first need to define a Spider Monkey algorithm that makes random moves. At any
game state, we can enumerate a set of legal moves and specify that each occurs with
equal probability. The only exception is dealing a fresh row of 10 cards which is clearly
undesirable unless “no further progress is possible”. However, determining if progress
is possible is not trivial, so I simply imposed a move limit of 1000. More specifically,
the algorithm is

for round = 1, 2, 3, 4, 5, 6 LOOP

for iter = 1, 2, . . . , 1000 LOOP

Enumerate all legal moves (except dealing from the stock).
Let N be the number of such moves.
if N > 0, then choose a random legal move,

assigning each move a probability of 1/N .

END LOOP

if round < 6, then deal 10 cards from the stock.

if round = 6, then

if all eight suits have been removed, then declare VICTORY;
otherwise, concede DEFEAT.

END LOOP

We also assume that

(a) SpiderMonkey will never split an in-suit sequence if the destination column is
empty. For instance, the 6-5 from an exposed 9-8-7-6-5 can be moved to another 7,
but not to an empty column.

(b) SpiderMonkey will never shift all cards in a source column to an empty destina-
tion column (this is to speed up a winning endgame).

(c) SpiderMonkey can deal 10 cards from the stock even with one or more empty
columns (this avoids a stalemate if the monkey removes too many suits prema-
turely).

5

With these specifications it is easily seen that any legal move can be uniquely identified
by specifying a source and destination column. For instance, in Figure 1 the legal
moves are bd, be, bf, bj, ca, ch, ia, ih, where columns are labelled a-j
from left to right. Each move occurs with probability 1/8.

To ensure that the monkey wins a fair percentage of games, I gave it a large handi-
cap: I pretended that each game was played at the 1-suit level! Preliminary experimen-
tation showed that a monkey making random moves can win more than half the time
at the 1-suit level. This is the key observation that allows the random walk method to
work.

4.3 Results

For each of the forty 4-suited hands played on FSS, I iterated the Spider Monkey algo-
rithm 100 times at the 1-suit level so the estimated equity was a fraction of the form
N/100 for some integer N . I defined an “inversion” as any pair of games such that the
latter game had lower equity than the former [10]. Thus, no inversions would occur
if the games were arranged in order of ascending equity, and similarly the maximum
number would occur if the games were arranged in the reverse order. If two games had
exactly the same equity, then I simply added “small random noise” as a tiebreaker.

In my experiment, I got 468 inversions for the equities shown in Figure 2. It is
clear that a downward trend exists, with early games starting with high equities and
later games gradually shifting towards lower values. Simulations reveals that if the
program were unbiased, then the probability of 468 or more inversions occurring in
40 games is 0.036 < 0.05, so we have reason to believe that the program is biased. In
statistical language, we say that 468 inversions is significant at the α = 0.05 level, and
the null hypothesis (i.e., that the program is not biased) is rejected [11].

5 Discussion

Due to the random nature of the experiment, the results are not “replicable” in the
usual sense but I would expect that a student with programming experience should
be able to reproduce similar results by implementing the Spider Monkey algorithm
as described above. A few example hands that I obtained with FSS with associated
equities are shown in Figure 3. Each row of text corresponds to a column in FSS. For
convenience, I have inserted spaces between the tableau and the stock. Note that only
the ranks are shown since Spider Monkey is playing at the 1-suit level.

I have not discussed how or why a Spider program would be designed to arrange
the cards to make it harder to win if the player has a win rate. It would certainly be
legitimate for someone to ask what a software developer would gain by doing this.
My best guess is that the designer of FSS wants to avoid giving a strong player hands
that are too easy. Despite these good intentions, I nevertheless believe it is unethical to
alter the difficulty level without explicitly warning the user. An example of a program

6

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
eq

ui
ty

game number

Figure 2: Equities for 40 games of Spider played on FSS.

Game 3, equity = 0.88 Game 15, equity = 0.45 Game 32, equity = 0.11
4jq82k qq86a
j5k240 j90k4
2aa307 62kqq
260934 6j942
j7ak3 a8q94
k6q54 a6590
7788k 776k9
j4569 335j3
8q755 89a2a
38j02 70530

4k3k62 9277k
3q028k 04j6a
7j43a5 59j6j
600ak3 338qq
9j37k 8kj87
25869 94527
aq539 7a502
47495 k5q0q
q80a8 a6q64
906a2 j824j

23428j 24750
65669j 99506
j60ajq 87qkq
24q6q3 69098
82753 3525a
8k990 jq8k3
8k073 k3aa4
24k6k k487q
2j4j5 j7a90
34q5a 770aa

Figure 3: Example hands with equities.

7

with warning is the Microsoft Windows 10 version of Spider Solitaire. The user has
the option of selecting various difficulty levels, confident in the knowledge that deals
cannot be unbiased.

References

[1] G. Tesauro, Temporal difference learning and TD-gammon, Commun. ACM 38 (3)
(1995), 58–68.

[2] J. Pearl, The solution for the branching factor of the alpha-beta pruning algorithm
and its optimality, Commun. ACM 25 (8) (1982), 559–564.

[3] D.T. Gillespie, The mathematics of Brownian motion and Johnson noise, Am. J.
Phys. 64 (3) (1996), 225–240.

[4] J. Lu and D. Li, Sampling online social networks by random walks, in Proceed-
ings of the First ACM International Workshop on Hot Topics on Interdisciplinary
Social Networks Research, HotSocial ’12, ACM, pp. 33–40, New York, NY, 2012.

[5] Y. Xu, X. Yi, and C. Zhang, A random walks method for text classification, in
Proceedings of the SIAM International Conference on Data Mining, pp. 340–347,
2006.

[6] P.F.C. Tilles, S.V. Petrovskii, and P.L. Natti, A random walk description of individ-
ual animal movement accounting for periods of rest, Open Science 3(11) (2016),
16 pp.

[7] M. Weisser, How Many Games of Spider Solitaire are Winnable? Explorations Into
The Mathematics Underlying Spider Solitaire, Graduate Liberal Studies Works
(MALS/MPhil), 2012.

[8] S.N. Brown, Spider Solitaire Winning Strategies, Private Publisher, US, 2016.

[9] T. Tao, Spider solitaire, Plus (2018), https://plus.maths.org/content/spider-solitaire.

[10] B. Margolius, Permutations with inversions, J. Integer Seq. 4 (2001), Article 01.2.4.

[11] P. Sedgwick, Understanding statistical hypothesis testing, BMJ 348 (2014), g3557.

8

http://doi.acm.org/10.1145/203330.203343
http://doi.acm.org/10.1145/358589.358616
http://doi.acm.org/10.1145/358589.358616
http://aapt.scitation.org/doi/pdf/10.1119/1.18210
http://doi.acm.org/10.1145/2392622.2392628
https://epubs.siam.org/doi/abs/10.1137/1.9781611972764.30
http://rsos.royalsocietypublishing.org/content/3/11/160566
http://rsos.royalsocietypublishing.org/content/3/11/160566
https://wesscholar.wesleyan.edu/cgi/viewcontent.cgi?article=1002&context=etd_gls
https://wesscholar.wesleyan.edu/cgi/viewcontent.cgi?article=1002&context=etd_gls
https://plus.maths.org/content/spider-solitaire
https://cs.uwaterloo.ca/journals/JIS//VOL4/MARGOLIUS/inversions.pdf
https://www.bmj.com/content/348/bmj.g3557

	Introduction
	Random Walks
	Movement between states
	Evaluating individual states

	Spider Solitaire
	Win Rate for Games With/Without Undo
	The ideal unbiased Spider Solitaire program

	Experiment
	Free Spider Solitaire Server
	Spider Monkey Algorithm
	Results

	Discussion

