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An elementary proof that the regular polygon is the largest
among polygons that are inscribed in a circle

Rikuto Tanaka, Jinya Miyamoto, Yuki Maruo, Keita Nakayama1 and Ryohei
Miyadera2

1 Introduction

In this article, we present an elementary proof of the following fact.

(∗) A regular polygon has the largest area among all polygons inscribed in a circle.

In this statement, it is assumed that all polygons have the same number of sides.
Most proofs for (∗) require sophisticated knowledge of calculus. Jensen’s inequal-

ity was used in [1], which is difficult for most high school students to prove. It is
relatively easy to make a polygon of a larger area from an irregular polygon by mak-
ing two neighbouring sides of the same length; this fact is sometimes presented as
proof that the regular polygon has the largest area among polygons that are inscribed
in a circle, but we need an advanced theorem to obtain rigid proof using this line of
argument. Section 5 presents an outline of the proof presented in [2] because this proof
demonstrates the difficulty of proving (∗). We treat the case of polygons that have an
even number of sides in Section 2, and the proof is elementary. This requires a high
school freshman’s knowledge, although the calculation is complicated, and we used
the knowledge of geometric progressions.

We prove the case of (∗) with n sides for an arbitrary natural number n in Section 3;
this result generalises that of Section 2. In Section 3, we use a series of skilful tech-
niques. The importance of Section 2 is that it only requires elementary knowledge of
mathematics and is intuitively easy to understand.

The results in Sections 2 and 3 can be understood intuitively by many high-school
students and can be introduced in the classroom. Most of the proofs were made by four
Japanese high-school students, although a mathematician made them mathematically
rigid.

Theorem 5 in Section 3 can be applied to other problems, and we present a problem
for which this theorem is applied.

1Students at Nishinomiya City High School, Japan
2Ryohei Miyadera is a mathematician and the mathematics advisor at Keimei Gakuin, Japan.
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2 The area of polygons with an even number of sides

Let n be a natural number. In this section, we treat only polygons with 2n sides. Here,
we only use elementary geometry and some intuitive knowledge of the limits of se-
quences. Two types of operations are required for a finite number sequence.

Definition 1. We define two operations (a) and (b) on any finite sequence a1, a2, . . . , a2n:

(a) This operation creates the sequence

a1 + a2
2

,
a1 + a2

2
,
a3 + a4

2
,
a3 + a4

2
, . . . ,

a2n−1 + a2n
2

,
a2n−1 + a2n

2
.

(b) This operation creates the sequence

a2n + a1
2

,
a2 + a3

2
,
a2 + a3

2
, . . . ,

a2n−2 + a2n−1

2
,
a2n−2 + a2n−1

2
,
a2n + a1

2
.

Figure 1: Polygon Figure 2: Polygon after (a) operation

Let O be the centre of the circles in Figure 1 and 2. We start with the polygon in
Figure 1 and apply operation (a) to the central angles θ1, θ2, . . . , θ2n. We thereby obtain
the polygon in Figure 2 with the central angles γ1, γ1, γ2, γ2, . . . , γn, γn. This procedure
is used to prove in Theorem 2.

Theorem 2. For each integer n ≥ 2, the regular 2n-sided polygon has the largest area among
all 2n-sided polygons inscribed in a given circle.

Proof. Let θ1, θ2, . . . , θ2n and γ1, γ2, . . . , γn be the angles given in Figures 1 and 2, and
note that

γ1 =
θ1 + θ2

2
, γ2 =

θ3 + θ4
2

, . . . , γi =
θ2i−1 + θ2i

2
, . . . , γn =

θ2n−1 + θ2n
2

and that
γ1 + γ2 + · · ·+ γn−1 + γn = π . (1)
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Since γ1 = θ1+θ2
2

, we have that |P1P3| = |Q1Q3|. Therefore, the triangular base of
△Q1Q2Q3 is the same as that of △P1P2P3. The height of △Q1Q2Q3 is larger than
△P1P2P3 because |Q1Q2| = |Q2Q3|. Then, the area of △Q1Q2Q3 is larger than that
of △P1P2P3, and the area of polygon Q1Q2Q3O is larger than that of polygon P1P2P3O.
Similarly, polygon QiQi+1Qi+2O is larger than PiPi+1Pi+2O for i = 2, 3, . . . , 2n − 3. We
can also prove that polygon Q2n−1Q2nQ1O is larger than polygon P2n−1P2nP1O.

By adding the areas of these polygons, we prove the following: the area of polygon
Q1Q2 · · ·QnQ1 is larger than that of polygon P1P2 · · ·PnP1.

Since we get
γ1, γ1, . . . , γn, γn (2)

by applying operation (a) to θ1, θ2, . . . , θ2n, we obtain a larger polygon when we apply
operation (a) to the central angles of the sides of the polygons. The same can be said
for applying operation (b) to the central angles of the sides of the polygons.

Next, we apply operation (b) to (2) and obtain

β1,1 =
γn + γ1

2
, β1,2 =

γ1 + γ2
2

, β1,2 =
γ1 + γ2

2
, . . .

. . . , β1,n =
γn−1 + γn

2
, β1,n =

γn−1 + γn
2

, β1,1 =
γn + γ1

2
. (3)

Then, we use operation (a) for (3), and we get

β2,1 =
γn + 2γ1 + γ2

22
, β2,1 =

γn + 2γ1 + γ2
22

,

β2,2 =
γ1 + 2γ2 + γ3

22
, β2,2 =

γ1 + 2γ2 + γ3
22

,

. . .

β2,n =
γn−1 + 2γn + γ1

22
, β2,n =

γn−1 + 2γn + γ1
22

. (4)

Then, we apply operation (b) to (4), and we get

β3,1 =
γn−1 + 3γn + 3γ1 + γ2

23
,

β3,2 =
γn + 3γ1 + 3γ2 + γ3

23
, β3,2 =

γn + 3γ1 + 3γ2 + γ3
23

,

. . .

β3,n =
γn−2 + 3γn−1 + 3γn + γ1

23
, β3,n =

γn−2 + 3γn−1 + 3γn + γ1
23

,

β3,1 =
γn−1 + 3γn + 3γ1 + γ2

23
. (5)

In (3), symbol β1,1 has one γn and one γ1, and, similarly, each β1,j has two different
types of symbols for j = 1, 2, . . . , n. In (4), each β2,1 has one γn, two γ1 and one γ2, and
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each β2,j has four symbols for each j = 1, 2, . . . , n, with three different types of symbols
in each. In (5), each β3,j has eight symbols and four different types of symbols.

Before we continue to make βj,i by the (a) and (b) operations, we study the rule that
determines the number of symbols and the number of different types of symbols.

Both β2,n and β2,1 contain four symbols, so β3,1 = β2,n+β2,1

2
contains eight symbols.

Although β2,n and β2,1 have three different symbols, they share two symbols. Thus,
β3,1 has four different symbols. Similarly, β2i−1,1 and β2i,1 have 22i−1 and 22i symbols,
respectively. Furthermore, they have 2i and 2i+1 different symbols, as we continue to
create finite sequences

β2i−1,1, β2i−1,2, β2i−1,2, . . . , β2i−1,n, β2i−1,n, β2i−1,1

and
β2i,1, β2i,1, β2i,2, β2i,2, . . . , β2i,n, β2i,n

for i = 1, 2, . . . and j = 1, 2, . . . , n. Therefore, βn−1,j has n different symbols.
Hence, by (1), we have for each j = 1, 2, . . . , n that

βn−1,j ≥
γ1 + · · ·+ γn

2n−1
=

π

2n−1
. (6)

Next, we apply operation (a) and operation (b) again. We are going to show that
each angle converges to π

n
, and hence we must prove that the difference between the

angles converges to 0. When we compare the two angles, we can compare them after
we reduce γ1+···+γn

2n−1 from each angle.
First, we apply operation (b) to βn−1,1, βn−1,1, . . . , βn−1,n, βn−1,n, and subtract γ1+···+γn

2n−1

from each angle. Then, the differences

γ′
1 =

βn−1,n + βn−1,1

2
− γ1 + · · ·+ γn

2n−1
,

γ′
2 =

βn−1,1 + βn−1,2

2
− γ1 + · · ·+ γn

2n−1
,

...

γ′
n =

βn−1,n−1 + βn−1,n

2
− γ1 + · · ·+ γn

2n−1
,

satisfy
γ′
1 + · · ·+ γ′

n = (γ1 + · · ·+ γn)
(
1− n

2n−1

)
.

By using a procedure similar to that used in (2), (3), (4), (5), and (6) we get numbers β′
i,j

satsifying

β′
n−1,j ≥

γ′
1 + · · ·+ γ′

n

2n−1
.

If we subtract γ′
1+···+γ′

n

2n−1 from each angle and perform a similar task, we obtain γ′′
1 , · · · , γ′′

n

such that

γ′′
1 + · · ·+ γ′′

n = (γ′
1 + · · ·+ γ′

n)
(
1− n

2n−1

)
= (γ1 + · · ·+ γn)

(
1− n

2n−1

)2

.
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If we repeat this procedure m times, then the sum of the angles γ(m)
1 , . . . , γ

(m)
n satisfies

γ
(m)
1 + · · ·+ γ(m)

n = (γ1 + · · ·+ γn)
(
1− n

2n−1

)m

,

and the sum converges to 0 as m → ∞. Therefore, the difference between the angles
tends to 0 as we repeatedly apply the two operations to the central angles.

We have proved that by applying the operations (a) and (b) repeatedly, each central
angle converges to π

n
. Hence, the area of the polygon increases as it becomes closer to

the regular polygon.
This indicates that the area of any 2n-sided polygon inscribed in a circle is equal to

or less than that of the regular 2n-sided polygon inscribed in the same circle. Therefore,
the regular polygon has the largest area among the polygons inscribed in a circle. 2

Remark 3. In the proof of Theorem 2, we should use the Binomial Theorem and math-
ematical induction to make the proof mathematically rigid; however, it can be under-
stood without these.

3 Polygons with arbitrarily many sides

In this section, we prove (∗) for n-sided polygons where n ≥ 3 is an arbitrary natural
number. Here, we use more knowledge of mathematics than in the previous section.
We need mathematical induction and calculations related to the limit of sequences.
The calculations used in the proof may appear very complicated; however, if explained
intuitively, we assume that high school students will understand these ideas.

Definition 4. We define the following operation on any sequence of real numbers
b1, b2, . . . , bn and any integer i with 1 ≤ i < n:

(c)i This operation creates the sequence

b1, b2, . . . , bi−1,
bi + bi+1

2
,
bi + bi+1

2
, bi+2, . . . , bn .

Theorem 5. Let a1, a2, . . . , an be a sequence of real numbers and let s = a1 + a2 + · · · + an.
By repeatedly applying the operations (c)i for all i = 1, 2, . . . , n, we obtain a sequence

s/n+ δ1, s/n+ δ2, . . . , s/n+ δn , (7)

for real numbers δ1, δ2, . . . , δn, where |δ1|, |δ2|, . . . , |δn| can be as small as desired. In other
words, each number in the resulting sequences converges to s/n.

Proof. We prove this theorem through mathematical induction. If n = 2, then opera-
tion (c)1 applied to a1, a2 yields a1+a2

2
, a1+a2

2
. Therefore, (7) is valid for n = 2. Note that

δ1 = δ2 = 0 in this case.
We assume that this theorem is valid for n − 1 and prove the case for n, where

n ≥ 3. We start with a1, a2, . . . , an and apply the operations (c)i sufficiently many
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times to a1, a2, . . . , an−1 to get a sequence dk + δ1, dk + δ2, . . . , dk + δn−1 for real numbers
dk, δ1, δ2, . . . , δn−1, where |δ1|, |δ2|, . . . , |δn−1| can be as small as desired. The remaining
(last) number is s − (n − 1)dk − (δ1 + · · · + δn−1). Therefore, we have the following
sequence:

dk + δ1, dk + δ2, . . . , dk + δn−1, s− (n− 1)dk − (δ1 + · · ·+ δn−1) . (8)

After applying the operations (c)i to

dk + δ2, dk + δ3, . . . , dk + δn−1, s− (n− 1)dk − (δ1 + · · ·+ δn−1)

sufficiently times, we obtain a sequence dk+1 + δ′2, dk+1 + δ′3, . . . , dk+1 + δ′n for real num-
bers dk+1, δ′2, δ′3, . . . , δ′n, where |δ′2|, |δ′3|, . . . , |δ′n| can be as small as desired. Then, the
remaining (first) number can be described as s− (n− 1)dk+1 − (δ′2 + δ′3 + · · ·+ δ′n), and
we obtain a sequence of numbers

s− (n− 1)dk+1 − (δ′2 + δ′3 + · · ·+ δ′n), dk+1 + δ′2, dk+1 + δ′3, . . . , dk+1 + δ′n . (9)

We did not alter the value of dk + δ1, the first element in (8), when we applied the
operations to the last n− 1 numbers; hence, dk + δ1 is equal to the first element in (9):

dk + δ1 = s− (n− 1)dk+1 − (δ′2 + δ′3 + · · ·+ δ′n) .

Therefore,

dk+1 =
s− dk − (δ1 + δ′2 + δ′3 + · · ·+ δ′n)

n− 1
,

so
dk+1 −

s

n
= −

dk − s
n

n− 1
− δ1 + δ′2 + δ′3 + · · ·+ δ′n

n− 1
.

If |δ1 + δ′2 + δ′3 + · · ·+ δ′n| is sufficiently small, then∣∣∣dk+1 −
s

n

∣∣∣ ≤ ∣∣∣∣dk − s
n

n− 1

∣∣∣∣+ 1

(n− 1)k
.

Therefore for each m,∣∣∣dm − s

n

∣∣∣ ≤ 1

(n− 1)

∣∣∣dm−1 −
s

n

∣∣∣+ 1

(n− 1)m−1

≤ 1

(n− 1)
(

1

(n− 1)

∣∣∣dm−2 −
s

n

∣∣∣+ 1

(n− 1)m−2
) +

1

(n− 1)m−1

...

≤ 1

(n− 1)m−1

∣∣∣d1 − s

n

∣∣∣+ m− 1

(n− 1)m−1
.

Therefore, dm → s
n

when m → ∞. The proof follows by induction. 2
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Remark 6. In the proof of Theorem 5, we use the fact that m−1
(n−1)m−1 tends to zero when

m increases. This is well-known but some high school students might not know this.

Theorem 7. For each integer n ≥ 3, the regular n-sided polygon has the largest area among
all n-sided polygons inscribed in a given circle.

Proof. Let a1, a2, . . . , an be the central angles of the polygon. By Theorem 5, the poly-
gon’s area grows closer to that of the regular polygon as we apply the operations (c)i.
We explained that the area always increases during the process in Theorem 2. Thus,
the regular polygon has the largest area among the polygons inscribed in a circle. 2

4 A problem of containers with different water levels

Theorem 5 can be applied to the following problem. We have a group of water con-
tainers in Figure 3 and an operation that makes the water levels of two neighbouring
containers equal. An example of this operation is shown in Figures 3, 4 and 5. In
Figure 4, we remove the slit between the 6th container and the 7th container. Then,
the water levels of the two containers will be the same. Subsequently, we put the slit
back, as shown in Figure 5. As we can see, this operation is mathematically the same
as that used in Theorem 5. By Theorem 5, we can make the levels of the contain-
ers close to the average of the levels in Figure 3 by repeatedly applying the operation.

1 2 3 4 5 6 7 8 9 10

Figure 3: Water Levels 1

1 2 3 4 5 6 7 8 9 10

Figure 4: Water Levels 2

1 2 3 4 5 6 7 8 9 10

Figure 5: Water Levels 3

5 Appendix

Here, we outline proof, presented in [2], that the regular n-sided polygon is the largest
among n-sided polygons that are inscribed in a circle. The proof is short and nice but
depends on advanced-level calculus, unlike the proofs above in this article.

Proof. Let D be the set of vectors in Rn that describe the angles subtended by the sides
of a non-self-intersecting cyclic polygon (which is allowed to have sides of length 0).
Then D is clearly a closed bounded set and hence compact. Let f(v) be the area of poly-
gon P described by vector v ∈ D. Then, f(v) is continuous within D. An advanced-
level calculus theorem states that each continuous function attains a maximum on a
compact set. Therefore, f(v) attains a maximum value on D. Suppose that f(a) is the
maximum value for a ∈ D and let R be the polygon described by a. If R is not regular,
then R has two sides, AB and BC of unequal length. Move B on the arc to make AB
and BC equal in length. It can be proved that the area of the new polygon thereby
created is larger than R, a contradiction. Therefore, R is regular. 2
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