## Parabola Volume 60, Issue 1 (2024)

## How to derive the quadratic formula Jozef Doboš ${ }^{1}$

## Introduction

The solution formula to the quadratic equation

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

is usually derived in textbooks by completing the square. This is done in the following way (see [1]):
"When you use the technique of completing the square to solve quadratic equations, begin by rewriting the equation in the form $x^{2}+\frac{b}{a} x=-\frac{c}{a}$. Next, add $\left(\frac{1}{2} \cdot \frac{b}{a}\right)^{2}$ to both sides of the equation, and then express the variable side as a square. Take the square root of both sides, and solve the two resulting linear equations for $x$. ."

This is very unnatural and potentially confusing for students who see it for the first time. The following approach is more appropriate:

Multiply both sides by $4 a$.
Add $b^{2}-4 a c$ to both sides.

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
4 a^{2} x^{2}+4 a b x+4 a c & =0 \\
a)^{2} x^{2}+2(2 a) b x+b^{2} & =b^{2} \\
(2 a x+b)^{2} & =D
\end{aligned}
$$

Factor the left side as a perfect square. $\quad(2 a)^{2} x^{2}+2(2 a) b x+b^{2}=b^{2}-4 a c$
where the expression $D=b^{2}-4 a c$ is the discriminant of the quadratic equation (1). This gives the well-known solution formula to (1):

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{2}
\end{equation*}
$$

[^0]
## More detailed explanations

The key to this technique is the identity

$$
(A x+B)^{2}=A^{2} x^{2}+2 A B x+B^{2}
$$

We see that the middle term of the quadratic trinomial should contain the number 2 .

$$
(A x+B)^{2}=A^{2} x^{2}+\stackrel{\text { § }}{2} A B x+B^{2}
$$

For this reason, we multiply the quadratic equation (1) by the number 2.
Multiply both sides by 2 .

$$
\begin{align*}
a x^{2}+b x+c & =0 \\
2 a x^{2}+2 b x+2 c & =0 \tag{3}
\end{align*}
$$

Next, we want the quadratic coefficient to be a square.

$$
(A x+B)^{2}=\stackrel{\boxed{\Omega}}{A^{2}} x^{2}+2 A B x+B^{2}
$$

For this reason, we multiply the equation (3) by the expression $2 a$.
Multiply both sides by $2 a$.

$$
\begin{align*}
2 a x^{2}+2 b x+2 c & =0 \\
(2 a)^{2} x^{2}+2(2 a) b x+4 a c & =0 \tag{4}
\end{align*}
$$

From there, we see that it will be appropriate to choose $A=2 a$ and $B=b$. Finally, we need to have $b^{2}\left(=B^{2}\right)$ instead of $4 a c$ in the equation (4).

Add $b^{2}$ to both sides.

$$
\begin{aligned}
(2 a)^{2} x^{2}+2(2 a) b x+4 a c & =0 \\
(2 a)^{2} x^{2}+2(2 a) b x+b^{2}+4 a c & =b^{2} \\
(2 a)^{2} x^{2}+2(2 a) b x+b^{2} & =b^{2}-4 a c \\
(2 a x+b)^{2} & =b^{2}-4 a c
\end{aligned}
$$

## Final notes

This method (in the form as stated in the introduction) can be found in [2], or online
but, unfortunately, not in textbooks. You can even buy a T-shirt with it:

[^1]Finally, let us note that the following identity

$$
(2 a x+b)^{2}-4 a\left(a x^{2}+b x+c\right)=b^{2}-4 a c
$$

from [3] can be derived in a similar way:
Multiply both sides by $4 a$.

$$
\begin{aligned}
a x^{2}+b x+c & =: p(x) \\
4 a^{2} x^{2}+4 a b x+4 a c & =4 a p(x) \\
(2 a)^{2} x^{2}+2(2 a) b x+b^{2} & =4 a p(x)+b^{2}-4 a c \\
(2 a x+b)^{2} & =4 a p(x)+b^{2}-4 a c \\
(2 a x+b)^{2}-4 a p(x) & =b^{2}-4 a c
\end{aligned}
$$

All you now have to do is substitute for $p(x)$.

## References

[1] S.L. McCune, Algebra I. Review and Workbook, McGraw-Hill Education, 2019.
[2] B. Pieronkiewicz and J. Tanton, Different ways of solving quadratic equations, Annales Universitatis Paedagogicae Cracoviensis, Studia ad Didacticam Mathematicae Pertinentia 11 (2019), 103-125.
[3] J. Zimba, A short derivation of the quadratic formula, Parabola 59(2) (2023), 6 pages.


[^0]:    ${ }^{1}$ Jozef Doboš is a full professor at Institute of Mathematics, P J Šafárik University in Košice, Slovakia.

[^1]:    https://www.redbubble.com/i/t-shirt/Quadratic-Formula-Derivation-by-MathShirts/40392693.NL9AC

